
Microprocessor Lab

MCA- 209

SELF LEARNING MATERIAL

DIRECTORATE

OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY

MEERUT – 250 005,

UTTAR PRADESH (INDIA)

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be

reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning,

recording or by any information storage or retrieval system, without prior permission from the

publisher.

Information contained in this book has been published by Directorate of Distance Education and

has been obtained by its authors from sources be lived to be reliable and are correct to the best

of their knowledge. However, the publisher and its author shall in no event be liable for any

errors, omissions or damages arising out of use of this information and specially disclaim and

implied warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

MICROPROCESSOR LAB

• Study of 8085 and 8086/8088 Kit.

• Assembly Language Programs for 8088 kit

(i) address and data transfer. (ii) addition, subtraction. (iii) block transfer. (iv) find greatest

numbers. (v) find r's and (r-1)'s complements of signed and unsigned number

• Assembly Language Programs for 8086/8088

(i) Multiplication of two decimal/binary/hexadecimal/octal numbers. (ii) Division of two

decimal/binary/hexadecimal/octal numbers. (iii) Conversion of lower case to upper case

character.

• Test the performance of Booth's Algorithm for (i) Signed numbers. (ii) Unsigned numbers.

Unit-I

Introduction to Parallel computing

Before taking a toll on Parallel Computing, first let‘s take a look at the background of

computations of a computer software and why it failed for the modern era.

Computer software were written conventionally for serial computing. This meant that

to solve a problem, an algorithm divides the problem into smaller instructions. These

discrete instructions are then executed on Central Processing Unit of a computer

one by one. Only after one instruction is finished, next one starts.

Real life example of this would be people standing in a queue waiting for movie ticket

and there is only cashier.Cashier is giving ticket one by one to the persons.

Complexity of this situation increases when there are 2 queues and only one cashier.

So, in short Serial Computing is following:

In this, a problem statement is broken into discrete instructions.

Then the instructions are executed one by one.

Only one instruction is executed at any moment of time.

Look at point 3. This was causing a huge problem in computing industry as only one

instruction was getting executed at any moment of time. This was a huge waste of

hardware resources as only one part of the hardware will be running for a particular

instruction and of time. As problem statements were getting heavier and bulkier, so

does the amount of time in execution of those statements. Example of processors

are Pentium 3 and Pentium 4.

Now let‘s come back to our real life problem. We could definitely say that complexity

will decrease when there are 2 queues and 2 cashier giving tickets to 2 persons

simultaneously. This is an example of Parallel Computing.

Parallel Computing

It is the use of multiple processing elements simultaneously for solving any problem.

Problems are broken down into instructions and are solved concurrently as each

resource which has been applied to work is working at the same time.

Advantages of Parallel Computing over Serial Computing are as follows:

It saves time and money as many resources working together will reduce the time

and cut potential costs.

It can be impractical to solve larger problems on Serial Computing.

It can take advantage of non-local resources when the local resources are finite.

Serial Computing ‗wastes‘ the potential computing power, thus Parallel Computing

makes better work of hardware.

Types of Parallelism:

Bit-level parallelism: It is the form of parallel computing which is based on the

increasing processor‘s size. It reduces the number of instructions that the system

must execute in order to perform a task on large-sized data.

Example: Consider a scenario where an 8-bit processor must compute the sum of

two 16-bit integers. It must first sum up the 8 lower-order bits, then add the 8 higher-

order bits, thus requiring two instructions to perform the operation. A 16-bit processor

can perform the operation with just one instruction.

Instruction-level parallelism: A processor can only address less than one instruction

for each clock cycle phase. These instructions can be re-ordered and grouped which

are later on executed concurrently without affecting the result of the program. This is

called instruction-level parallelism.

Task Parallelism: Task parallelism employs the decomposition of a task into

subtasks and then allocating each of the subtasks for execution. The processors

perform execution of sub tasks concurrently.

Why parallel computing?

The whole real world runs in dynamic nature i.e. many things happen at a certain

time but at different places concurrently. This data is extensively huge to manage.

Real world data needs more dynamic simulation and modeling, and for achieving the

same, parallel computing is the key.

Parallel computing provides concurrency and saves time and money.

Complex, large datasets, and their management can be organized only and only

using parallel computing‘s approach.

Ensures the effective utilization of the resources. The hardware is guaranteed to be

used effectively whereas in serial computation only some part of hardware was used

and the rest rendered idle.

Also, it is impractical to implement real-time systems using serial computing.

Applications of Parallel Computing:

Data bases and Data mining.

Real time simulation of systems.

Science and Engineering.

Advanced graphics, augmented reality and virtual reality.

Limitations of Parallel Computing:

It addresses such as communication and synchronization between multiple sub-

tasks and processes which is difficult to achieve.

The algorithms must be managed in such a way that they can be handled in the

parallel mechanism.

The algorithms or program must have low coupling and high cohesion. But it‘s

difficult to create such programs.

More technically skilled and expert programmers can code a parallelism based

program well.

Future of Parallel Computing: The computational graph has undergone a great

transition from serial computing to parallel computing. Tech giant such as Intel has

already taken a step towards parallel computing by employing multicore processors.

Parallel computation will revolutionize the way computers work in the future, for the

better good. With all the world connecting to each other even more than before,

Parallel Computing does a better role in helping us stay that way. With faster

networks, distributed systems, and multi-processor computers, it becomes even

more necessary.

Parallelism in Uniprocessor Systems

Uniprocessor system

A uniprocessor system is defined as a computer system that has a single central

processing unit that is used to execute computer tasks. As more and more modern

software is able to make use of multiprocessing architectures, such as SMP and

MPP, the term uniprocessor is therefore used to distinguish the class of computers

where all processing tasks share a single CPU. Most desktop computers are now

shipped with multiprocessing architectures.

Parallel computer structures

Parallel processing has been developed as an effective technology in modern

computers to meet the demand for higher performance, lower cost and accurate

results in real-life applications. Concurrent events are common in today‘s computers

due to the practice of multiprogramming, multiprocessing, or multicomputing.

Modern computers have powerful and extensive software packages. To analyze the

development of the performance of computers, first we have to understand the basic

development of hardware and software.

Computer Development Milestones − There is two major stages of development of

computer - mechanical or electromechanical parts. Modern computers evolved after

the introduction of electronic components. High mobility electrons in electronic

computers replaced the operational parts in mechanical computers. For information

transmission, electric signal which travels almost at the speed of a light replaced

mechanical gears or levers.

Elements of Modern computers − A modern computer system consists of computer

hardware, instruction sets, application programs, system software and user interface.

The computing problems are categorized as numerical computing, logical reasoning,

and transaction processing. Some complex problems may need the combination of

all the three processing modes.

Evolution of Computer Architecture − In last four decades, computer architecture has

gone through revolutionary changes. We started with Von Neumann architecture and

now we have multicomputers and multiprocessors.

Performance of a computer system − Performance of a computer system depends

both on machine capability and program behavior. Machine capability can be

improved with better hardware technology, advanced architectural features and

efficient resource management. Program behavior is unpredictable as it is

dependent on application and run-time conditions

Multiprocessors and Multicomputers

In this section, we will discuss two types of parallel computers −

Multiprocessors

Multicomputers

Shared-Memory Multicomputers

Three most common shared memory multiprocessors models are −

Uniform Memory Access (UMA)

In this model, all the processors share the physical memory uniformly. All the

processors have equal access time to all the memory words. Each processor may

have a private cache memory. Same rule is followed for peripheral devices.

When all the processors have equal access to all the peripheral devices, the system

is called a symmetric multiprocessor. When only one or a few processors can access

the peripheral devices, the system is called an asymmetric multiprocessor.

Non-uniform Memory Access (NUMA)

In NUMA multiprocessor model, the access time varies with the location of the

memory word. Here, the shared memory is physically distributed among all the

processors, called local memories. The collection of all local memories forms a

global address space which can be accessed by all the processors.

Cache Only Memory Architecture (COMA)

The COMA model is a special case of the NUMA model. Here, all the distributed

main memories are converted to cache memories.

Distributed - Memory Multicomputers − A distributed memory multicomputer system

consists of multiple computers, known as nodes, inter-connected by message

passing network. Each node acts as an autonomous computer having a processor, a

local memory and sometimes I/O devices. In this case, all local memories are private

and are accessible only to the local processors. This is why, the traditional machines

are called no-remote-memory-access (NORMA) machines.

Multivector and SIMD Computers

In this section, we will discuss supercomputers and parallel processors for vector

processing and data parallelism.

Vector Supercomputers

In a vector computer, a vector processor is attached to the scalar processor as an

optional feature. The host computer first loads program and data to the main

memory. Then the scalar control unit decodes all the instructions. If the decoded

instructions are scalar operations or program operations, the scalar processor

executes those operations using scalar functional pipelines.

On the other hand, if the decoded instructions are vector operations then the

instructions will be sent to vector control unit.

SIMD Supercomputers

In SIMD computers, ‗N‘ number of processors are connected to a control unit and all

the processors have their individual memory units. All the processors are connected

by an interconnection network.

PRAM and VLSI Models

The ideal model gives a suitable framework for developing parallel algorithms

without considering the physical constraints or implementation details.

The models can be enforced to obtain theoretical performance bounds on parallel

computers or to evaluate VLSI complexity on chip area and operational time before

the chip is fabricated.

Parallel Random-Access Machines

Sheperdson and Sturgis (1963) modeled the conventional Uniprocessor computers

as random-access-machines (RAM). Fortune and Wyllie (1978) developed a parallel

random-access-machine (PRAM) model for modeling an idealized parallel computer

with zero memory access overhead and synchronization.

An N-processor PRAM has a shared memory unit. This shared memory can be

centralized or distributed among the processors. These processors operate on a

synchronized read-memory, write-memory and compute cycle. So, these models

specify how concurrent read and write operations are handled.

Following are the possible memory update operations −

Exclusive read (ER) − In this method, in each cycle only one processor is allowed to

read from any memory location.

Exclusive write (EW) − In this method, at least one processor is allowed to write into

a memory location at a time.

Concurrent read (CR) − It allows multiple processors to read the same information

from the same memory location in the same cycle.

Concurrent write (CW) − It allows simultaneous write operations to the same memory

location. To avoid write conflict some policies are set up.

VLSI Complexity Model

Parallel computers use VLSI chips to fabricate processor arrays, memory arrays and

large-scale switching networks.

Nowadays, VLSI technologies are 2-dimensional. The size of a VLSI chip is

proportional to the amount of storage (memory) space available in that chip.

We can calculate the space complexity of an algorithm by the chip area (A) of the

VLSI chip implementation of that algorithm. If T is the time (latency) needed to

execute the algorithm, then A.T gives an upper bound on the total number of bits

processed through the chip (or I/O). For certain computing, there exists a lower

bound, f(s), such that

A.T2 >= O (f(s))

Where A=chip area and T=time

Architectural Development Tracks

The evolution of parallel computers I spread along the following tracks −

Multiple Processor Tracks

Multiprocessor track

Multicomputer track

Multiple data track

Vector track

SIMD track

Multiple threads track

Multithreaded track

Dataflow track

In multiple processor track, it is assumed that different threads execute concurrently

on different processors and communicate through shared memory (multiprocessor

track) or message passing (multicomputer track) system.

In multiple data track, it is assumed that the same code is executed on the massive

amount of data. It is done by executing same instructions on a sequence of data

elements (vector track) or through the execution of same sequence of instructions on

a similar set of data (SIMD track).

In multiple threads track, it is assumed that the interleaved execution of various

threads on the same processor to hide synchronization delays among threads

executing on different processors. Thread interleaving can be coarse (multithreaded

track) or fine (dataflow track).

INTRODUCTION

Parallel processing has emerged as a key enabling technology in modern

computers, driven by the everincreasing demand for higher performance, lower

costs, and sustained productivity in real-life applications. Concurrent events are

taking place in today‘s high performance computers due to the common practice of

multiprogramming, multiprocessing, or multicomputing. Parallelism can be in the

form of look ahead, pipelining vectorization concurrency, simultaneity, data

parallelism, partitioning, interleaving, overlapping, multiplicity, replication, time

sharing, space sharing, multitasking, multiprogramming, multithreading, and

distributed computing at different processing levels. Parallel computing is a form of

computation in which many calculations are carried out simultaneously, operating on

the principle that large problems can often be divided into smaller ones, which are

then solved concurrently

II. CLASSIFICATION

Flynn Classification: The four classifications defined by Flynn are based upon the

number of concurrent instruction (or control) and data streams available in the

architecture:

1. Single Instruction, Single Data stream (SISD) A sequential computer which

exploits no parallelism in either the instruction or data streams. Single control unit

(CU) fetches single Instruction Stream (IS) from memory. The CU then generates

appropriate control signals to direct single processing element (PE) tooperate on

single Data Stream (DS) i.e. one operation at a time Examples of SISD architecture

are the traditional uniprocessor machines like a PC (currently manufactured PCs

have multiple processors) or old mainframes.

2. Single Instruction, Multiple Data streams (SIMD) A computer which exploits

multiple data streams against a single instruction stream to perform operations which

may be naturally parallelized. For example, an array processor or GPU.

3. Multiple Instruction, Single Data stream (MISD) Multiple instructions operate on a

single data stream. Uncommon architecture which is generally used for fault

tolerance. Heterogeneous systems operate on the same data stream and must

agree on the result. Examples include the Space Shuttle flight control computer.

4. Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous

processors simultaneously executing different instructions on different data.

Distributed systems are generally recognized to be MIMD architectures; either

exploiting a single shared memory space or a distributed memory space. A multi-

core superscalar processor is an MIMD processor.

PARALLEL PROCESSING APPLICATIONS

Parallel processing refers to the speeding up a computational task by dividing it into

smaller jobs across multiple processors. Notable applications for parallel processing

(also known as parallel computing) include computational astrophysics,

geoprocessing (or seismic surveying), climate modeling, agriculture estimates,

financial risk management, video color correction, computational fluid dynamics,

medical imaging and drug discovery.

―They asked if I‘d be willing to extend this into general parallel computing

applications,‖ Hwu, who‘s now considered a godfather of parallel computing, told

Built In.

That effectively sparked the use of GPUs for general-purpose computing — and,

eventually, for massively parallel systems as well. Believe it or not, the circuit your

computer uses to render fancy graphics for video games and 3D animations is built

from the same root architecture as the circuits that make possible accurate climate

pattern prediction. Wild, huh? And GPUs‘ parallel infrastructure continues to power

the most powerful computers.

―If you look at the workhorses for the scientific community today, the new computers,

like [IBM supercomputer] Summit, and also the next generation, like Aurora, they're

largely based on this model now,‖ Hwu said.

The model is a workhorse for medical and commercial applications, too, facilitating

everything from drug discovery to interstellar simulations to post-production film

techniques.

Here are just a few ways parallel computing is helping improve results and solve the

previously unsolvable.

SCIENCE, RESEARCH & ENERGY

When you tap the Weather Channel app on your phone to check the day‘s forecast,

thank parallel processing. Not because your phone is running multiple applications

— parallel computing shouldn‘t be confused with concurrent computing — but

because maps of climate and weather patterns require the serious computational

heft of parallel.

Parallel computing is the backbone of other scientific studies, too, including

astrophysic simulations, seismic surveying, quantum chromodynamics and more.

Here‘s a closer look at a few.

https://en.wikipedia.org/wiki/Massively_parallel

Northwestern University

NORTHWESTERN UNIVERSITY

Location: Evanston, Ill.

How it‘s using parallel computing: Astronomy moves slowly. It can take millions of

years for stars to collide, galaxies to merge or black holes to swallow astronomical

objects — which is why astrophysicists must turn to computer simulations to study

these kinds of processes. And such complex models demand massive compute

power.

A recent breakthrough in the study of black holes, for example, happened courtesy

of a parallel supercomputer. Researchers solved a four-decade-old mystery, proving

that the innermost part of matter that orbits, then collapses into, black holes aligns

with those black holes. That‘s key to helping scientists better understand how this

still-mysterious phenomenon behaves.

―These details around the black hole may seem small, but they enormously impact

what happens in the galaxy as a whole,‖ said researcher Alexander Tchekhovskoy of

Northwestern University, which partnered with the University of Amsterdam and the

https://news.northwestern.edu/stories/2019/06/most-detailed-ever-simulations-of-black-hole-solve-longstanding-mystery/

University of Oxford on the study. ―They control how fast the black holes spin and, as

a result, what effect black holes have on their entire galaxies.‖

DownUnderGeosolutions

DOWNUNDER GEOSOLUTIONS

Location: Houston, Texas

How it‘s using parallel computing: One of the oil industry‘s biggest players lives in

suburban Houston and goes by the name Bubba. But Bubba‘s no black-gold bigwig,

it‘s a supercomputer (among the fastest on the planet) owned by Australian

geoprocessing company DownUnderGeoSolutions.

Seismic data processing has long helped provide a clearer picture of underground

strata, an obvious must for industries like oil and gas. Supercomputing, though, is

practically de rigueur in energy excavation nowadays — especially as algorithms

process massive amounts of data to help drillers mine difficult terrain, like salt

domes. (French energy titan Total uses the world‘s most powerful commercial

supercomputer.)

Bubba‘s backbone is formed by thousands of Intel Xeon Phi multiprocessors that are

cooled in chilled oil baths, a technique that allows for extremely high-performance

parallel processing. The hope is that by selling parallel power access to third-party

companies, fewer energy outfits will feel compelled to build their own, less efficient

systems.

University of Illinois

UNIVERSITY OF ILLINOIS

Location: Urbana-Champaign, Ill.

How it‘s using parallel computing: Every month, the U.S. Department of Agriculture

estimates supply and demand figures for a number of major crops. The crucially

important forecasts can impact everyone from legislators striving to stabilize markets

to farmers who want to manage their finances.

Last year, researchers at U of I‘s Department of Natural Resources and

Environmental Sciences topped the feds‘ industry-standard forecast by incorporating

more data — crop growth calculations and seasonal climate information as well as

satellite figures — which it then crunched using machine learning algorithms

processed by the university‘s parallel-data supercomputer, the petascale Blue

Waters. Their prediction quickly proved more accurate by nearly five bushels per

acre.

In 2019, the team turned its predictive eye to Australian wheat yields with similarly

impressive results.

Commerce

THE COMMERCIAL WORLD

Even though parallel computing is often the domain of academic and government

research institutions, the commercial world has definitely taken notice.

―The banking industry, investment industry traders, cryptocurrency — those are the

big communities that are using a lot of GPUs for making money,‖ Hwu said.

Parallel computing also has roots in the entertainment world — no surprise given

that GPUs were first designed for heavy graphics loads. It‘s also a boon to industries

that rely on computational fluid dynamics, a mechanical analysis that has several big

commercial applications. Here‘s a closer look.

Wells Fargo

WELLS FARGO

Location: San Francisco, Calif.

How it‘s using parallel computing: Nearly every major aspect of today‘s banking,

from credit scoring to risk modeling to fraud detection, is GPU-accelerated. In a way,

the departure from traditional CPU-powered analysis was inevitable. GPU offloading

came of age around 2008, just as lawmakers ushered in several rounds of post-

crash financial legislation. ―It‘s not uncommon now to find a bank with tens of

thousands of Tesla GPUs,‖ Xcelerit co-founder HichamLahlou told The Next

Platform in 2017. ―And this wouldn‘t have been the case without that mandatory push

from regulation.‖

https://www.nextplatform.com/2017/03/02/big-banks-regulation-mother-gpu-invention/
https://www.nextplatform.com/2017/03/02/big-banks-regulation-mother-gpu-invention/

One early adopter was JPMorgan Chase, which announced in 2011 that its switch

from CPU-only to GPU-CPU hybrid processing had improved risk calculations at its

data centers by 40 percent and netted 80 percent savings. More recently, Wells

Fargo used Nvidia‘s GPUs for processes as varied as accelerating AI models for

liquidity risk and virtualizing its desktop infrastructure.

GPUs also found themselves at the center of a very 2019 financial trend: the crypto-

mining craze. But chip sales have since stabilized after that particular boom and

bust.

Blackmagic Design

BLACKMAGIC DESIGN

Location: Port Melbourne, Australia

How it‘s using parallel computing: If you saw either Brad Pitt‘s character working out

his intergalactic daddy issues in Ad Astra or John Wick‘s latest round of elaborately

https://www.nvidia.com/docs/IO/77309/JP-Morgan.pdf
https://thenextweb.com/hardfork/2019/08/16/nvidias-gpu-sales-normalize-crypto-mining-craze/

choreographed assassin dispatch, you also saw the handiwork of parallel

processing. Both were colored using the Blackmagic Design‘s DaVinci Resolve

Studio, one of a handful of Hollywood-standard post-production suites (including

Adobe Effects and Avid Media Composer) that incorporates GPU-accelerated tools.

―The high-quality rendering based on what they call the ray-tracing technique are all

using some of these processors now,‖ Hwu said. Color correction and 3D animation,

he added, both commonly use GPU parallel processing.

Volkswagen

VOLKSWAGEN

Location: Wolfsburg, Germany

How it‘s using parallel computing: When French driver Romaine Dumas drove an

electric Volkswagen prototype to auto-racing glory last year — smashing the Pikes

Peak climb record by completing the first ever sub-eight-minute finish at the

legendary track, kicking off a barnstorming tour of more all-time best finishes — the

win was arguably as notable for computing as it was for electric automobiles.

https://jalopnik.com/watch-the-electric-volkswagen-i-d-r-blast-up-heavens-g-1839091896

Engineers relied on Anasys Fluent software in at least two key facets: running a

virtual simulation of the course, and finding the ideal balance of low weight and

aerodynamic drag loss for the battery cooling system.

Such cooling is one of a number of so-called computational fluid dynamics (CFD)

simulations users can run on Ansys, a program that easily supports GPU

acceleration. It‘s one of the more headline-worthy examples of how high-powered

parallel computing has become a go-to for all manner of CFD research in everything

from numerical weather prediction combustion engine optimization.

Medicine & Drug Discovery

MEDICINE & DRUG DISCOVERY

Emergent technology is reshaping the medical landscape in countless ways,

from virtual reality that ameliorates macular degeneration to developments in

bioprinting tissue and organs to the countless ways Amazon is poised to further

impact healthcare. Parallel computing has for years made its presence felt in this

arena, but it‘s poised to fuel even more breakthroughs. Here‘s how.

https://builtin.com/healthcare-technology/ar-virtual-reality-healthcare
https://builtin.com/hardware/3d-printing-in-medicine
https://builtin.com/hardware/3d-printing-in-medicine
https://builtin.com/healthcare-technology/amazon-healthcare

Nvidia

NVIDIA

Location: Santa Clara, Calif.

How it‘s using parallel computing: One of the first industries that saw a sea change

thanks to parallel processing, particularly the GPU-for-general-computing revolution,

was medical imaging. Today, a whole body of medical literature exists cataloging

how the high computation and bandwidth led to vast improvements in speed and

definition for, well, just about everything: MRI, CT, X-rays, optical tomography and

more.

The next great leap in medical imaging will likely be similarly parallel-focused, and

parallel pioneer Nvidia is at the forefront. Using the company‘s recently released

toolkit, radiologists can more easily access the powers of AI, which helps imaging

systems handle growing amounts of data and computational weight. Dubbed Clara,

the GPU-leveraging system reportedly lets doctors create imaging models with ten

times less data than otherwise required. Among the institutions that have already

signed on are Ohio State University and the National Institutes of Health.

Acellera

ACELLERA

Location: London

How it‘s using parallel computing: If you think of parallel processing as a nesting doll,

one of the innermost figures could be a life-saving drug. Parallel programming is an

ideal architecture for running simulations of molecular dynamics, which has proven

to be highly useful in drug discovery.

Medical research company Acellera has developed multiple programs that harness

the powerful offloading infrastructure of GPUs: simulation code ACEMD and Python

package HTMD. They‘ve been used to perform simulations on some of the world‘s

most powerful computers, including a Titan run that helped scientists better

understand how our neurotransmitters communicate. And Acellera has partnered

with the likes of Janssen and Pfizer for pharma research.

Since advanced parallel computing allows for fine-grain study of molecular

machinery, it could also have major applications in the study of genetic disease —

something researchers are currently looking into.

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/2019/05/20/summit-charts-a-course-to-uncover-the-origins-of-genetic-diseases/

Oak Ridge National Laboratory

OAK RIDGE NATIONAL LABORATORY

Location: Oak Ridge, Tenn.

How it‘s using parallel computing: Beyond image rendering and pharmaceutical

research, parallel processing‘s herculean data-analytics power hold great promise

for public health. Take one particularly harrowing epidemic: veteran suicide. Around

20 veterans have died by suicide every day since 2014, according to data from the

Department of Veterans Affairs. The issue is one of precious few to garner

genuine bipartisan attention.

After the VA developed a model that dove into veterans‘ prescription and refill

patterns, researchers at the Oak Ridge National Laboratory were then able to run the

algorithm on a high-performance computer 300 times faster than the VA‘s

https://www.nytimes.com/2019/09/20/us/politics/veterans-suicide.html

capabilities. The hope is to eventually use IBM‘s fabled (and GPU-packed) Summit

supercomputer to allow real-time risk alerts to be sent to doctors.

―We don‘t want veterans to walk into a clinic and get missed because someone

hasn‘t been specifically trained to recognize these symptoms,‖ said ORNL

researcher EdmonBegoli. ―We never want it to be too late to reach someone.‖

Pipelining Processing

Pipelining is the process of accumulating instruction from the processor through a

pipeline. It allows storing and executing instructions in an orderly process. It is also

known as pipeline processing.

Pipelining is a technique where multiple instructions are overlapped during

execution. Pipeline is divided into stages and these stages are connected with one

another to form a pipe like structure. Instructions enter from one end and exit from

another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register followed by a

combinational circuit. The register is used to hold data and combinational circuit

performs operations on it. The output of combinational circuit is applied to the input

register of the next segment.

https://www.olcf.ornl.gov/2019/08/29/ornl-va-collaboration-targets-veteran-suicide-epidemic/
https://www.olcf.ornl.gov/2019/08/29/ornl-va-collaboration-targets-veteran-suicide-epidemic/

Pipeline system is like the modern day assembly line setup in factories. For example

in a car manufacturing industry, huge assembly lines are setup and at each point,

there are robotic arms to perform a certain task, and then the car moves on ahead to

the next arm.

Types of Pipeline

It is divided into 2 categories:

Arithmetic Pipeline

Instruction Pipeline

Arithmetic Pipeline

Arithmetic pipelines are usually found in most of the computers. They are used for

floating point operations, multiplication of fixed point numbers etc. For example: The

input to the Floating Point Adder pipeline is:

X = A*2^a

Y = B*2^b

Here A and B are mantissas (significant digit of floating point numbers),

while a and b are exponents.

The floating point addition and subtraction is done in 4 parts:

Compare the exponents.

Align the mantissas.

Add or subtract mantissas

Produce the result.

Registers are used for storing the intermediate results between the above

operations.

Instruction Pipeline

In this a stream of instructions can be executed by

overlapping fetch, decode and execute phases of an instruction cycle. This type of

technique is used to increase the throughput of the computer system.

An instruction pipeline reads instruction from the memory while previous instructions

are being executed in other segments of the pipeline. Thus we can execute multiple

instructions simultaneously. The pipeline will be more efficient if the instruction cycle

is divided into segments of equal duration.

Pipeline Conflicts

There are some factors that cause the pipeline to deviate its normal performance.

Some of these factors are given belo

1. Timing Variations

All stages cannot take same amount of time. This problem generally occurs in

instruction processing where different instructions have different operand

requirements and thus different processing time.

2. Data Hazards

When several instructions are in partial execution, and if they reference same data

then the problem arises. We must ensure that next instruction does not attempt to

access data before the current instruction, because this will lead to incorrect results.

3. Branching

In order to fetch and execute the next instruction, we must know what that instruction

is. If the present instruction is a conditional branch, and its result will lead us to the

next instruction, then the next instruction may not be known until the current one is

processed.

4. Interrupts

Interrupts set unwanted instruction into the instruction stream. Interrupts effect the

execution of instruction.

5. Data Dependency

It arises when an instruction depends upon the result of a previous instruction but

this result is not yet available.

Advantages of Pipelining

The cycle time of the processor is reduced.

It increases the throughput of the system

It makes the system reliable.

Disadvantages of Pipelining

The design of pipelined processor is complex and costly to manufacture.

The instruction latency is more.

Arithmetic Pipeline :

An arithmetic pipeline divides an arithmetic problem into various sub problems for

execution in various pipeline segments. It is used for floating point operations,

multiplication and various other computations. The process or flowchart arithmetic

pipeline for floating point addition is shown in the diagram.

Floating point addition using arithmetic pipeline :

The following sub operations are performed in this case:

Compare the exponents.

Align the mantissas.

Add or subtract the mantissas.

Normalise the result

First of all the two exponents are compared and the larger of two exponents is

chosen as the result exponent. The difference in the exponents then decides how

many times we must shift the smaller exponent to the right. Then after shifting of

exponent, both the mantissas get aligned. Finally the addition of both numbers take

place followed by normalisation of the result in the last segmentX=0.3214*10^3 and

Y=0.4500*10^2

Explanation:

First of all the two exponents are subtracted to give 3-2=1. Thus 3 becomes the

exponent of result and the smaller exponent is shifted 1 times to the right to give

Y=0.0450*10^3

Finally the two numbers are added to produce

Z=0.3664*10^3

As the result is already normalized the result remains the same.

2. Instruction Pipeline :

In this a stream of instructions can be executed by overlapping fetch, decode and

execute phases of an instruction cycle. This type of technique is used to increase the

throughput of the

computer system. An instruction pipeline reads instruction from the memory while

previous instructions are being executed in other segments of the pipeline. Thus we

can execute multiple instructions simultaneously. The pipeline will be more efficient if

the instruction cycle is divided into segments of equal duration.

In the most general case computer needs to process each instruction in following

sequence of steps:

Fetch the instruction from memory (FI)

Decode the instruction (DA)

Calculate the effective address

Fetch the operands from memory (FO)

Execute the instruction (EX)

Store the result in the proper place

The flowchart for instruction pipeline is shown below

Here the instruction is fetched on first clock cycle in segment 1.

Now it is decoded in next clock cycle, then operands are fetched and finally the

instruction is executed. We can see that here the fetch and decode phase overlap

due to pipelining. By the time the first instruction is being decoded, next instruction is

fetched by the pipeline.

In case of third instruction we see that it is a branched instruction. Here when it is

being decoded 4th instruction is fetched simultaneously. But as it is a branched

instruction it may point to some other instruction when it is decoded. Thus fourth

instruction is kept on hold until the branched instruction is executed. When it gets

executed then the fourth instruction is copied back and the other phases continue as

usual.

Attention reader! Don‘t stop learning now. Get hold of all the important CS Theory

concepts for SDE interviews with the CS Theory Course at a student-friendly price

and become industry ready.

https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1

Unit-II

Principles of designing pipelined processors

Internal forwarding and register tagging

A forwarding rule and its corresponding IP address represent the frontend

configuration of a Google Cloud load balancer.

Note: Forwarding rules are also used for protocol forwarding, Classic VPN gateways,

and Traffic Director to provide forwarding information in the control plane. This page

only discusses forwarding rules in the context of Google Cloud load balancers.

Each forwarding rule references an IP address and one or more ports on which the

load balancer accepts traffic. Some Google Cloud load balancers limit you to

a predefined set of ports, and others let you specify arbitrary ports.

The forwarding rule also specifies an IP protocol. For Google Cloud load balancers,

the IP protocol is always either TCP or UDP.

Depending on the load balancer type, the following is true:

A forwarding rule specifies a backend service, target proxy, or target pool.

A forwarding rule and its IP address are internal or external.

Also, depending on the load balancer and its tier, a forwarding rule is

either global or regional.

Internal forwarding rules

Internal forwarding rules forward traffic that originates inside a Google Cloud

network. The clients can be in the same Virtual Private Cloud (VPC) network as the

backends, or the clients can be in a connected network.

Internal forwarding rules are used by two types of Google Cloud load

balancers:

internal TCP/UDP load balancers

internal HTTP(S) load balancers

Internal TCP/UDP load balancers

https://cloud.google.com/compute/docs/protocol-forwarding
https://cloud.google.com/network-connectivity/docs/vpn/concepts/overview
https://cloud.google.com/traffic-director/docs/forwarding-rules
https://cloud.google.com/load-balancing/docs/forwarding-rule-concepts#port_specifications
https://cloud.google.com/load-balancing/docs/backend-service
https://cloud.google.com/load-balancing/docs/target-proxies
https://cloud.google.com/load-balancing/docs/target-pools
https://cloud.google.com/load-balancing/docs/forwarding-rule-concepts#network_tiers
https://cloud.google.com/compute/docs/reference/rest/v1/globalForwardingRules/insert
https://cloud.google.com/compute/docs/reference/rest/v1/forwardingRules/insert
https://cloud.google.com/load-balancing/docs/internal-lb-and-other-networks

With an internal TCP/UDP load balancer, the supported traffic type is IPv4, and the

supported protocol is either TCP or UDP (not both).

Each internal TCP/UDP load balancer has at least one regional internal forwarding

rule. The regional internal forwarding rules point to the load balancer's regional

internal backend service. The following diagram shows how a forwarding rule fits into

the Internal TCP/UDP Load Balancing architecture.

Internal TCP/UDP Load Balancing forwarding rule (click to enlarge)

The following diagram shows how the load balancer components fit within a subnet

and region.

The internal forwarding rule must be in a region and a subnet. The backend service

only needs to be in the region.

High-level internal TCP/UDP load balancer example (click to enlarge)

For more information about internal TCP/UDP load balancers

With an internal HTTP(S) load balancer, the supported traffic type is IPv4, and the

supported protocol can be HTTP, HTTPS, or HTTP/2.

Each internal HTTP(S) load balancer has exactly one regional internal forwarding

rule. The regional internal forwarding rule points to the load balancer's regional target

HTTP or HTTPS proxy. The following diagram shows how a forwarding rule fits into

the Internal HTTP(S) Load Balancing architecture.

Internal HTTP(S) Load Balancing forwarding rule (click to enlarge)

For more information about internal HTTP(S) load balancers, see the Internal

HTTP(S) Load Balancing overview. For information about configuring internal

HTTP(S) load balancers, see Preparing for Internal HTTP(S) Load Balancing setup.

External forwarding rules

External forwarding rules forward traffic that originates from the internet, outside of

your VPC network.

External forwarding rules are used by the following Google Cloud load balancers:

external HTTP(S) load balancers

SSL proxy load balancers

TCP proxy load balancers

network load balancers

HTTP(S) load balancers

https://cloud.google.com/load-balancing/docs/l7-internal
https://cloud.google.com/load-balancing/docs/l7-internal
https://cloud.google.com/load-balancing/docs/l7-internal/setting-up-l7-internal

The external HTTP(S) load balancers support both Premium Tier and Standard Tier.

The forwarding rule and IP address both depend on the tier that you select for the

load balancer.

In an external HTTP(S) load balancer, a forwarding rule points to a target proxy.

In Premium Tier, an external HTTP(S) load balancer uses a global external IP

address, which can be either IPv4 or IPv6, and a global external forwarding rule. You

can provide a globally accessible application that directs end users to backends in

the closest region and distributes traffic among multiple regions. Because a global

external forwarding rule uses a single external IP address, you don't need to

maintain separate DNS records in different regions or wait for DNS changes to

propagate.

You can have two different global external IP addresses pointing to the same

external HTTP(S) load balancer. For example, in Premium Tier, the global external

IP address for one forwarding rule can be IPv4, and the global external IP address

for a second forwarding rule can be IPv6. Both forwarding rules can point to the

same target proxy. As a result, you can provide both an IPv4 and an IPv6 address

for the same external HTTP(S) load balancer. For more information, see the IPv6

termination documentation.

In Standard Tier, an external HTTP(S) load balancer uses a regional external IP

address, which must be IPv4, and a regional external forwarding rule. An external

HTTP(S) load balancer in Standard Tier can only distribute traffic to backends within

a single region.

The following diagram shows how a forwarding rule fits into the HTTP(S) Load

Balancing architecture.

HTTP(S) Load Balancing forwarding rule (click to enlarge)

For more information about external HTTP(S) load balancers, see the HTTP(S) Load

Balancing overview.

SSL proxy load balancers

An SSL proxy load balancer is similar to an external HTTP(S) load balancer because

it can terminate SSL (TLS) sessions. SSL proxy load balancers do not support path-

based redirection like external HTTP(S) load balancers, so they're best suited for

handling SSL for protocols other than HTTPS, such as IMAP or WebSockets over

SSL. For more information, see the SSL FAQ.

In an SSL proxy load balancer, a forwarding rule points to a target proxy.

SSL proxy load balancers support both Premium Tier and Standard Tier. The

forwarding rule and IP address both depend on the tier that you select for the load

balancer.

https://cloud.google.com/load-balancing/docs/ipv6
https://cloud.google.com/load-balancing/docs/ipv6
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/ssl#faq

In Premium Tier, an SSL proxy load balancer uses a global external IP address,

which can be either IPv4 or IPv6, and a global external forwarding rule. You can

provide a globally accessible application that directs end users to backends in the

closest region and distributes traffic among multiple regions. Because a global

external forwarding rule uses a single external IP address, you don't have to

maintain separate DNS records in different regions or wait for DNS changes to

propagate.

It is possible to have two different global external IP addresses pointing to the same

SSL proxy load balancer. For example, in Premium Tier, the global external IP

address for one forwarding rule can be IPv4, and the global external IP address for a

second forwarding rule can be IPv6. Both forwarding rules can point to the same

target proxy. As a result, you can provide both an IPv4 and an IPv6 address for the

same SSL proxy load balancer. For more information, see the IPv6

termination documentation.

In Standard Tier, an SSL proxy load balancer uses a regional external IP address,

which must be IPv4, and a regional external forwarding rule. An SSL proxy load

balancer in Standard Tier can only distribute traffic to backends within a single

region.

A TCP proxy load balancer offers global TCP proxying capability, without SSL

offload. TCP proxy load balancers support both Premium Tier and Standard Tier.

The forwarding rule and IP address both depend on the tier that you select for the

load balancer.

In a TCP proxy load balancer, a forwarding rule points to a target proxy.

In Premium Tier, a TCP proxy load balancer uses a global external IP address,

which can be either IPv4 or IPv6, and a global external forwarding rule. You can

provide a globally accessible application that directs end users to backends in the

closest region and distributes traffic among multiple regions. Because a global

external forwarding rule uses a single external IP address, you don't have to

maintain separate DNS records in different regions or wait for DNS changes to

propagate.

It is possible to have two different global external IP addresses pointing to the same

TCP proxy load balancer. For example, in Premium Tier, the global external IP

address for one forwarding rule can be IPv4, and the global external IP address for a

second forwarding rule can be IPv6. Both forwarding rules can point to the same

target proxy. As a result, you can provide both an IPv4 and an IPv6 address for the

same TCP proxy load balancer. For more information, see the IPv6

termination documentation.

In Standard Tier, a TCP proxy load balancer uses a regional external IP address,

which must be IPv4, and a regional external forwarding rule. A TCP proxy load

https://cloud.google.com/load-balancing/docs/ipv6
https://cloud.google.com/load-balancing/docs/ipv6
https://cloud.google.com/load-balancing/docs/ipv6
https://cloud.google.com/load-balancing/docs/ipv6

balancer in Standard Tier can only distribute traffic to backends within a single

region.

The following diagram shows how a forwarding rule fits into the TCP Proxy Load

Balancing architecture.

TCP Proxy Load Balancing forwarding rule (click to enlarge)

.

The network load balancers distribute either TCP or UDP traffic among backends in

a single region, and they support both Premium Tier and Standard Tier. A network

load balancer uses a regional external forwarding rule and a regional external IPv4

address (regardless of tier). The regional external IP address can be accessed

anywhere on the internet.

For backend service-based network load balancers, the regional external forwarding

rule points to a backend service. For target pool-based network load balancers, the

forwarding rule points to a target pool.

To support backend instances in more than one region, you must create a network

load balancer in each region. This is the case regardless of tier. The following figure

shows Network Load Balancing with three load balancers for three different regions.

Each load balancer has its own regional external forwarding rule with its own

regional external IPv4 address.

In Network Service Tiers, the distinction between Standard Tier and Premium Tier

depends on how far traffic is routed over the public internet:

Standard Tier: Offloads traffic as close as possible to the Google data center. This

means that traffic is typically routed over the public internet for a longer distance,

compared with Premium Tier.

Premium Tier: Routes traffic over Google's private network as far as possible before

leaving Google Cloud to get to the end user.

Scheme Target

Addre

ss

type

Addres

s

scope

Addres

s tier

Reserv

able

address

Notes

EXTERNAL

HTTP(S) Load

Balancing

SSL Proxy Load

Balancing

Target

HTTP

proxy

Target

HTTPS

proxy

Exter

nal

Region

al or

global,

matchi

ng the

forward

Premiu

m Tier:

Global

externa

l IP

addres

Yes,

optional

IPv6

availabl

e with a

global

externa

l

https://cloud.google.com/load-balancing/docs/forwarding-rule-concepts#network_tiers
https://cloud.google.com/load-balancing/docs/network/networklb-backend-service
https://cloud.google.com/load-balancing/docs/network/networklb-target-pools
https://cloud.google.com/network-tiers/docs/overview

TCP Proxy Load

Balancing

Target

SSL proxy

Target

TCP proxy

ing rule s and

forward

ing rule

Standa

rd Tier:

Region

al

externa

l IP

addres

s and

forward

ing rule

addres

s

(Premiu

m Tier)

EXTERNAL

Network Load

Balancing

Backend

service

Target

pool

Exter

nal

Region

al

Standa

rd or

Premiu

m

Yes IPv6

not

support

ed

EXTERNAL

Classic VPN

See

the Classi

c VPN

document

ation

Exter

nal

Region

al

Cloud

VPN

doesn't

have

Networ

k

Service

Tiers

Yes,

required

IPv6

not

support

ed

INTERNAL

Internal TCP/UDP

Load Balancing

Backend

service

Intern

al

Region

al

Premiu

m

Yes,

optional

Must

be from

the

primary

IP

range

of the

associa

ted

subnet

INTERNAL_MANAGE

D

Target

HTTP

Intern Region Premiu Yes, Must

be from

https://cloud.google.com/network-connectivity/docs/vpn/concepts/classic-topologies
https://cloud.google.com/network-connectivity/docs/vpn/concepts/classic-topologies
https://cloud.google.com/network-connectivity/docs/vpn/concepts/classic-topologies
https://cloud.google.com/network-connectivity/docs/vpn/concepts/classic-topologies

The internal load balancers (HTTP(S) and TCP/UDP) must use Google's private

network, and they are therefore always in the Premium Tier. Internal load balancing

is always regional.

Only the external load balancers (HTTP(S), TCP proxy, SSL proxy, and TCP/UDP

network) can be routed over the public internet. You can choose whether your

external load balancer is in the Premium Tier, using Google's private network, or in

the Standard Tier, using the public internet.

Network Load Balancing is always regional, regardless of tier.

With Premium Tier, external HTTP(S) load balancers, TCP proxy load balancers,

and SSL proxy load balancers are global. Their forwarding rules, IP addresses, and

backend services are global. In Standard Tier, these load balancers are effectively

regional. Their backend services remain global, but their forwarding rules and IP

addresses are regional.

IP address specifications

The forwarding rule must have an IP address that your customers use to reach your

load balancer. The IP address can be static or ephemeral.

A static IP address provides a single reserved IP address that you can point your

domain to. If you ever need to delete your forwarding rule and re-add it, you can

continue using the same reserved IP address.

An ephemeral IP address remains constant while the forwarding rule exists. When

you choose an ephemeral IP address, Google Cloud associates an IP address with

Internal HTTP(S)

Load Balancing

proxy

Target

HTTPS

proxy

al al m optional the

primary

IP

range

of the

associa

ted

subnet

INTERNAL_SELF_M

ANAGED

Traffic Director

Target

HTTP

proxy

Target

gRPC

proxy

Intern

al

Global Not

applica

ble

No 0.0.0.0,

127.0.0

.1, or

any

RFC

1918

addres

s is

allowed

your load balancer's forwarding rule. If you need to delete the forwarding rule and re-

add it, the forwarding rule might receive a new IP address.

Depending on the load balancer type, the IP address can have various attributes.

The following table summarizes the valid IP address configurations, based on the

load balancing scheme and the target of the forwarding rule.

Scheme Target

Ports

must

be

specifi

ed

Behavior

when

ports are

unspecifi

ed

Port requirements

EXTERNAL Target

HTTP

proxy

Yes N/A 80, 8080

EXTERNAL Target

HTTP

S

proxy

Yes N/A 443

EXTERNAL Target

SSL

proxy

Yes N/A 25, 43, 110, 143, 195,

443, 465, 587, 700, 993,

995, 1883, 3389, 5222,

5432, 5671, 5672, 5900,

5901, 6379, 8085, 8099,

9092, 9200, and 9300

EXTERNAL Target

TCP

proxy

Yes N/A 25, 43, 110, 143, 195,

443, 465, 587, 700, 993,

995, 1883, 3389, 5222,

5432, 5671, 5672, 5900,

5901, 6379, 8085, 8099,

9092, 9200, and 9300

EXTERNAL Target

VPN

Gatew

ay

Yes N/A 500, 4500

EXTERNAL Target

pool

No All ports

(1-

65535)

are

forwarde

d

Must be contiguous

Backe

nd

Yes N/A A list of up to five

(contiguous or non-

Multiple forwarding rules with a common IP address

Two or more forwarding rules with the EXTERNAL load balancing scheme can share

the same IP address if the following are true:

The ports used by each forwarding rule do not overlap.

service contiguous) ports or a

single port range

(contiguous). You cannot

specify both in the same

forwarding rule. To

configure all ports, use

one of these methods:

set --ports=1-65535 using

the gcloud command line

tool, or

set portRange to 1-

65535 using the API, or

leave

both ports and portRange

 fields empty in the API.

INTERNAL Backe

nd

service

Yes N/A Up to five (contiguous or

non-contiguous) or you

can specify ALL

INTERNAL_MANAGED Target

HTTP

proxy

Target

HTTP

S

proxy

Yes N/A One of 80 or 8080

443

INTERNAL_SELF_MAN

AGED

Target

HTTP

proxy

Target

HTTP

S

proxy

Yes N/A Must be a single value.

Within a VPC network, no

two forwarding rules for

Traffic Director can have

the same IP address and

port specification.

The Network Service Tiers of each forwarding rule matches the Network Service

Tiers of the external IP address.

Examples:

A network load balancer that accepts traffic on TCP port 79 and another network

load balancer that accepts traffic on TCP port 80 can share the same regional

external IP address.

You can use the same global external IP address for an external HTTP(S) load

balancer (HTTP and HTTPS).

If the forwarding rule's load balancing scheme is INTERNAL or

INTERNAL_MANAGED, multiple forwarding rules can use the same IP address. For

more information, see Internal TCP/UDP Load Balancing overview.

If the forwarding rule's load balancing scheme is INTERNAL_SELF_MANAGED for

Traffic Director, it must have a unique IP address.

Port specifications

The following table summarizes the valid port configurations, based on the load

balancing scheme and the target of the forwarding rule.

Hazard detection

There are many definitions for hazard but the most common definition when talking

about workplace health and safety is ―A hazard is any source of potential damage,

harm or adverse health effects on something or someone.‖

The CSA Z1002 Standard "Occupational health and safety - Hazard identification

and elimination and risk assessment and control" uses the following terms:

Harm – physical injury or damage to health.

Hazard – a potential source of harm to a worker.

Basically, a hazard is the potential for harm or an adverse effect (for example, to

people as health effects, to organizations as property or equipment losses, or to the

environment).

Please see the OSH Answers on Hazard and Risk for more information.

What is hazard identification?

Hazard identification is part of the process used to evaluate if any particular situation,

item, thing, etc. may have the potential to cause harm. The term often used to

describe the full process is risk assessment:

Identify hazards and risk factors that have the potential to cause harm (hazard

identification).

https://cloud.google.com/load-balancing/docs/internal
http://www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html
http://www.ccohs.ca/oshanswers/hsprograms/risk_assessment.html

Analyze and evaluate the risk associated with that hazard (risk analysis, and risk

evaluation).

Determine appropriate ways to eliminate the hazard, or control the risk when the

hazard cannot be eliminated (risk control).

Overall, the goal of hazard identification is to find and record possible hazards that

may be present in your workplace. It may help to work as a team and include both

people familiar with the work area, as well as people who are not – this way you

have both the experienced and fresh eye to conduct the inspection.

When should hazard identification be done?

Hazard identification can be done:

During design and implementation

Designing a new process or procedure

Purchasing and installing new machinery

Before tasks are done

Checking equipment or following processes

Reviewing surroundings before each shift

While tasks are being done

Be aware of changes, abnormal conditions, or sudden emissions

During inspections

Formal, informal, supervisor, health and safety committee

After incidents

Near misses or minor events

Injuries

To be sure that all hazards are found:

Look at all aspects of the work and include non-routine activities such as

maintenance, repair, or cleaning.

Look at the physical work environment, equipment, materials, products, etc. that are

used.

Include how the tasks are done.

Look at injury and incident records.

Talk to the workers: they know their job and its hazards best.

Include all shifts, and people who work off site either at home, on other job sites,

drivers, teleworkers, with clients, etc.

Look at the way the work is organized or done (include experience of people doing

the work, systems being used, etc).

Look at foreseeable unusual conditions (for example: possible impact on hazard

control procedures that may be unavailable in an emergency situation, power

outage, etc.).

Determine whether a product, machine or equipment can be intentionally or

unintentionally changed (e.g., a safety guard that could be removed).

Review all of the phases of the lifecycle.

Examine risks to visitors or the public.

Consider the groups of people that may have a different level of risk such as young

or inexperienced workers, persons with disabilities, or new or expectant mothers.

What types of hazards are there?

A common way to classify hazards is by category:

biological – bacteria, viruses, insects, plants, birds, animals, and humans, etc.,

chemical – depends on the physical, chemical and toxic properties of the chemical,

ergonomic – repetitive movements, improper set up of workstation, etc.,

physical – radiation, magnetic fields, temperature extremes, pressure extremes (high

pressure or vacuum), noise, etc.,

psychosocial – stress, violence, etc.,

safety – slipping/tripping hazards, inappropriate machine guarding, equipment

malfunctions or breakdowns.

How do I know what is a hazard?

Another way to look at health and safety in your workplace is to ask yourself the

following questions. These are examples only. You may find other items or situations

that can be a hazard. List any item that should be examined. During the risk

assessment process, the level of harm will be assessed.

What materials or situations do I come into contact with? Possibilities could include:

electricity

chemicals (liquids, gases, solids, mists, vapours, etc.)

temperature extremes of heat or cold (e.g., bakeries, foundries, meat processing)

ionizing/non-ionizing radiation (e.g., x-rays, ultraviolet (sun) rays)

http://www.ccohs.ca/oshanswers/biol_hazards/
http://www.ccohs.ca/oshanswers/chemicals/
http://www.ccohs.ca/oshanswers/ergonomics/
http://www.ccohs.ca/oshanswers/phys_agents/
http://www.ccohs.ca/oshanswers/psychosocial/
http://www.ccohs.ca/oshanswers/safety_haz/
http://www.ccohs.ca/oshanswers/safety_haz/electrical.html
http://www.ccohs.ca/oshanswers/chemicals/
http://www.ccohs.ca/oshanswers/phys_agents/hot_cold.html
http://www.ccohs.ca/oshanswers/phys_agents/ionizing.html
http://www.ccohs.ca/oshanswers/phys_agents/ultravioletradiation.html

oxygen deficiency

water

What materials or equipment could I be struck by?

moving objects (e.g., forklifts, overhead cranes, vehicles)

flying objects (e.g., sparks or shards from grinding)

falling material (e.g., equipment from above)

What objects or equipment could I strike or hit my body upon, or that part of my body

might be caught in, on, or between?

stationary or moving objects

protruding objects

sharp or jagged edges

pinch points on machines (places where parts are very close together)

objects that stick out (protrude)

moving objects (conveyors, chains, belts, ropes, etc.)

What could I fall from? (e.g., falls to lower levels)

objects, structures, tanks, silos, lofts

ladders, overhead walkways

roofs

trees, cliffs

What could I slip or trip on? (e.g., falls on same level)

obstructions on floor, stairs

surface issues (wet, oily, icy)

footwear that is in poor condition

How could I overexert myself?

lifting

pulling

pushing

carrying

repetitive motions

http://www.ccohs.ca/oshanswers/chemicals/howto/asphyxiants.html
http://www.ccohs.ca/oshanswers/prevention/ppe/drowning.html
http://www.ccohs.ca/oshanswers/safety_haz/forklift/
http://www.ccohs.ca/oshanswers/safety_haz/ladders/
http://www.ccohs.ca/oshanswers/safety_haz/falls.html
http://www.ccohs.ca/oshanswers/ergonomics/risk.html

What other situations could I come across?

unknown/unauthorized people in area

a potentially violent situation

working alone

confined space

missing/damaged materials

new equipment/procedure at work site

fire/explosion

chemical spill or release

Where can I find more information about hazards?

It may be necessary to research about what might be a hazard as well as how much

harm that hazard might cause. Sources of information include:

Safety Data Sheets (SDSs).

Manufacturer‘s operating instructions, manuals, etc.

Test or monitor for exposure (occupational hygiene testing such as chemical or noise

exposure).

Results of any job safety analysis.

Experiences of other organizations similar to yours.

Trade or safety associations.

Information, publications, alerts, etc. as published by reputable organizations, labour

unions, or government agencies.

What if I am new to the workplace?

If you are new to your workplace, to learn about the hazards of your job, you can:

ask your supervisor

ask a member of the health and safety committee or your health and safety

representative

ask about standard operating procedures and precautions for your job

check product labels and safety data sheets

pay attention to signs and other warnings in your work

watch for posters or instructions at the entrance of a chemical storage room to warn

of hazardous products

http://www.ccohs.ca/oshanswers/psychosocial/violence.html
http://www.ccohs.ca/oshanswers/hsprograms/workingalone.html
http://www.ccohs.ca/oshanswers/hsprograms/confinedspace_intro.html
http://www.ccohs.ca/oshanswers/hsprograms/job-haz.html

ask about operating instructions, safe work procedures, processes, etc.

Job sequencing and collision prevention

Problem Statement

In job sequencing problem, the objective is to find a sequence of jobs, which is

completed within their deadlines and gives maximum profit.

Solution

Let us consider, a set of n given jobs which are associated with deadlines and profit

is earned, if a job is completed by its deadline. These jobs need to be ordered in

such a way that there is maximum profit.

It may happen that all of the given jobs may not be completed within their deadlines.

Assume, deadline of ith job Ji is di and the profit received from this job is pi. Hence,

the optimal solution of this algorithm is a feasible solution with maximum profit.

Thus, D(i)>0D(i)>0 for 1⩽i⩽n1⩽i⩽n.

Initially, these jobs are ordered according to profit,

i.e. p1⩾p2⩾p3⩾...⩾pnp1⩾p2⩾p3⩾...⩾pn.

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)

D(0) := J(0) := 0

k := 1

J(1) := 1 // means first job is selected

fori = 2 … n do

r := k

while D(J(r)) > D(i) and D(J(r)) ≠ r do

r := r – 1

if D(J(r)) ≤ D(i) and D(i) > r then

for l = k … r + 1 by -1 do

J(l + 1) := J(l)

J(r + 1) := i

k := k + 1

Analysis

In this algorithm, we are using two loops, one is within another. Hence, the

complexity of this algorithm is O(n2)O(n2).

Example

Let us consider a set of given jobs as shown in the following table. We have to find a

sequence of jobs, which will be completed within their deadlines and will give

maximum profit. Each job is associated with a deadline and profit.

Solution

To solve this problem, the given jobs are sorted according to their profit in a

descending order. Hence, after sorting, the jobs are ordered as shown in the

following table.

Job J2 J1 J4 J3 J5

Deadline 1 2 2 3 1

Profit 100 60 40 20 20

From this set of jobs, first we select J2, as it can be completed within its deadline

and contributes maximum profit.

Next, J1 is selected as it gives more profit compared to J4.

In the next clock, J4 cannot be selected as its deadline is over, hence J3 is selected

as it executes within its deadline.

The job J5 is discarded as it cannot be executed within its deadline.

Thus, the solution is the sequence of jobs (J2, J1, J3), which are being executed

within their deadline and gives maximum profit.

Total profit of this sequence is 100 + 60 + 20 = 180

A collision avoidance system (CAS), also known as a pre-crash system, forward

collision warning system, or collision mitigation system, is a motorcar safety system

designed to prevent or reduce the severity of a collision.[2] In its basic form, a

forward collision warning system monitors a vehicle's speed, the speed of the vehicle

in front of it, and the distance between the vehicles, so that it can provide a warning

to the driver if the vehicles get too close, potentially helping to avoid a

crash.[3] Various technologies and sensors that are used include radar (all-weather)

and sometimes laser (LIDAR) and cameras (employing image recognition) to detect

an imminent crash. GPS sensors can detect fixed dangers such as approaching stop

signs through a location database.[2][4][5][6] Pedestrian detection can also be a

feature of these types of systems.

Collision avoidance systems range from widespread systems mandatory in some

countries, such as autonomous emergency braking (AEB) in the EU, agreements

https://en.wikipedia.org/w/index.php?title=Motorcar_safety&action=edit&redlink=1
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-mdpi-2
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-3
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Image_recognition
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-mdpi-2
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-mdpi-2
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-5
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-5

between car makers and safety officials to make crash avoidance systems

eventually standard, such as in the United States,[7] to research projects including

some manufacturer specific devices.

Advanced emergency braking system (AEBS) as defined by UN ECE regulation 131

is considered as: a system which can automatically detect a potential forward

collision and activate the vehicle braking system to decelerate the vehicle with the

purpose of avoiding or mitigating a collision.[8] UN ECE regulation 152 says

deceleration can be 5 metres per second squared.[9]

Once an impending collision is detected, these systems provide a warning to the

driver. When the collision becomes imminent, they can take action autonomously

without any driver input (by braking or steering or both). Collision avoidance by

braking is appropriate at low vehicle speeds (e.g. below 50 km/h (31 mph)), while

collision avoidance by steering may be more appropriate at higher vehicle speeds if

lanes are clear.[10] Cars with collision avoidance may also be equipped

with adaptive cruise control, using the same forward-looking sensors.

AEB differs from forward collision warning: FCW alerts the driver with a warning but

does not by itself brake the vehicle

Vector Processing

Sandra was writing a GIS program for computing Geographical Information Systems

(GIS) data for 20,000 and rivers and lakes in the Midwest. The calculations require a

large number of variables and data types including image data, map data, and data

from satellite images. Sandra created 300 different variables to hold data for the

various computations. When the program was executed, it had to be left overnight to

complete. Her teammate Jen was running a similar program and it took only a

fraction of the time. Jen said she was using a vector for processing the data.

Characteristics of a Vector

The two main characteristics of a vector are that it helps with fast processing and

that the size of the vector does not need to be decided in advance.

Vector Increases Efficiency

If you have the following 5 integers: 20, 25, 30, 35, 40 and you need to add 10 to

each of the integers, one method is to declare 5 variables to store each of the 5

integers. So, you have a = 20, b = 25, c = 30 and so on. The computer first finds 20,

add 10 to 20; then find 25 and add 10 to 25 and so on.

Using the vector method, instead of having 5 separate variables, you could have one

vector variable z. The vector saves all 5 numbers in its array: z[0] = 20; z[1] = 25;

z[2] = 30 and so on. The processor considers the entire vector as one variable and

instead of having to add 10 five separate times adds 10 at one time to all the

elements in the vector, thereby increasing computing efficiency.

https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-7
https://en.wikipedia.org/wiki/UN_ECE
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-8
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-9
https://en.wikipedia.org/wiki/Collision_avoidance_system#cite_note-10
https://en.wikipedia.org/wiki/Adaptive_cruise_control

Vector is Dynamic

A vector is dynamic because you do not have to decide in advance the size of the

vector, and it can increase or decrease in size dynamically, as the program runs,

depending on the number of variables the vector needs to hold. Therefore, in

Sandra's program, she does not need to know or decide in advance that the vector

needs to hold 20,000 variables for image data.

She can simply declare a dynamic vector and add more variables as the program

runs. She could customize the program so that a user can input the number of rivers

and lakes and the vector will expand to hold the number. In the same way, she can

programmatically eliminate a certain number of rivers and lakes and the vector will

automatically get smaller to hold the reduced number.

A vector processor is a computer with parallel processors

that have the capability for vector processing

Characteristics of Vector Processors

A vector processor is a CPU (Central Processing Unit) in a computer with parallel

processors and the capability for vector processing. The main characteristic of a

vector processor is that it makes use of the parallel processing capability of the

processor where two or more processors operate concurrently. This makes it

possible for:

the processors to perform multiple tasks simultaneously

or

for the task to be split into different subtasks handled by different processors and

combined to get the result.

The vector processor considers all of the elements of the vector as one single

element as it traverses through the vector in a single loop. Computers with vector

processors find many uses that involve computation of massive amounts of data

such as image processing, artificial intelligence, mapping the human genome, space

simulations, seismic data, and hurricane predictions

SIMD array processors

Array Processor performs computations on large array of data. These are two types

of Array Processors: Attached Array Processor, and SIMD Array Processor. These

are explained as following below.

1. Attached Array Processor :

To improve the performance of the host computer in numerical computational tasks

auxiliary processor is attatched to it.

Attached array processor has two interfaces:

Input output interface to a common processor.

Interface with a local memory.

Here local memory interconnects main memory. Host computer is general purpose

computer. Attached processor is back end machine driven by the host computer.

The array processor is connected through an I/O controller to the computer & the

computer treats it as an external interface.

2. SIMD array processor :

This is computer with multiple process unit operating in parallel Both types of array

processors, manipulate vectors but their internal organization is different.

SIMD is a computer with multiple processing units operating in parallel.

The processing units are synchronized to perform the same operation under the

control of a common control unit. Thus providing a single instruction stream, multiple

data stream (SIMD) organization. As shown in figure, SIMD contains a set of

identical processing elements (PES) each having a local memory M.

Each PE includes –

Working registers

Master control unit controls the operation in the PEs. The function of master control

unit is to decode the instruction and determine how the instruction to be executed. If

the instruction is scalar or program control instruction then it is directly executed

within the master control unit.

Main memory is used for storage of the program while each PE uses operands

stored in its local memory.

Masking and Data routing

The main reason for applying masking to a data field is to protect data that is

classified as personally identifiable information, sensitive personal data, or

commercially sensitive data. However, the data must remain usable for the purposes

of undertaking valid test cycles. It must also look real and appear consistent. It is

more common to have masking applied to data that is represented outside of a

corporate production system. In other words, where data is needed for the purpose

of application development, building program extensions and conducting various test

cycles. It is common practice in enterprise computing to take data from the

production systems to fill the data component, required for these non-production

environments. However, this practice is not always restricted to non-production

environments. In some organizations, data that appears on terminal screens to call

centre operators may have masking dynamically applied based on user security

permissions (e.g. preventing call centre operators from viewing Credit Card Numbers

in billing systems).

The primary concern from a corporate governance perspective[4] is that personnel

conducting work in these non-production environments are not always security

cleared to operate with the information contained in the production data. This

practice represents a security hole where data can be copied by unauthorized

personnel, and security measures associated with standard production level controls

can be easily bypassed. This represents an access point for a data security breach.

https://en.wikipedia.org/wiki/Data_field
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Data_masking#cite_note-4
https://en.wikipedia.org/wiki/Data_breach

The overall practice of data masking at an organizational level should be tightly

coupled with the Test Management Practice[5][6] and underlying Methodology and

should incorporate processes for the distribution of masked test data subsets

Background

Data involved in any data masking or obfuscation must remain meaningful at several

levels:

The data must remain meaningful for the application logic. For example, if elements

of addresses are to be obfuscated and city and suburbs are replaced with substitute

cities or suburbs, then, if within the application there is a feature that validates

postcode or post code lookup, that function must still be allowed to operate without

error and operate as expected. The same is also true for credit-card algorithm

validation checks and Social Security Number validations.

The data must undergo enough changes so that it is not obvious that the masked

data is from a source of production data. For example, it may be common knowledge

in an organisation that there are 10 senior managers all earning in excess of $300K.

If a test environment of the organisation's HR System also includes 10 identities in

the same earning-bracket, then other information could be pieced together to

reverse-engineer a real-life identity. Theoretically, if the data is obviously masked or

obfuscated, then it would be reasonable for someone intending a data breach to

assume that they could reverse engineer identity-data if they had some degree of

knowledge of the identities in the production data-set. Accordingly, data obfuscation

or masking of a data-set applies in such a manner as to ensure that identity and

sensitive data records are protected - not just the individual data elements in discrete

fields and tables.

The masked values may be required to be consistent across multiple databases

within an organization when the databases each contain the specific data element

being masked. Applications may initially access one database and later access

another one to retrieve related information where the foreign key has been masked

(e.g. a call center application first brings up data from a customer master database

and, depending on the situation, subsequently accesses one of several other

databases with very different financial products.) This requires that the masking

applied is repeatable (the same input value to the masking algorithm always yields

the same output value) but not able to be reverse engineered to get back to the

original value. Additional constraints as mentioned in (1) above may also apply

depending on the data element(s) involved. Where different character sets are used

across the databases that need to connect in this scenario, a scheme of converting

the original values to a common representation will need to be applied, either by the

masking algorithm itself or prior to invoking said algorithm.

Techniques

Substitution

https://en.wikipedia.org/wiki/Data_masking#cite_note-5
https://en.wikipedia.org/wiki/Data_masking#cite_note-5
https://en.wikipedia.org/wiki/Luhn_algorithm
https://en.wikipedia.org/wiki/Luhn_algorithm
https://en.wikipedia.org/wiki/Social_Security_number

Substitution is one of the most effective methods of applying data masking and being

able to preserve the authentic look and feel of the data records.

It allows the masking to be performed in such a manner that another authentic-

looking value can be substituted for the existing value. There are several data field

types where this approach provides optimal benefit in disguising the overall data

subset as to whether or not it is a masked data set. For example, if dealing with

source data which contains customer records, real life surname or first name can be

randomly substituted from a supplied or customised look up file. If the first pass of

the substitution allows for applying a male first name to all first names, then the

second pass would need to allow for applying a female first name to all first names

where gender equals "F." Using this approach we could easily maintain the gender

mix within the data structure, apply anonymity to the data records but also maintain a

realistic looking database, which could not easily be identified as a database

consisting of masked data.

This substitution method needs to be applied for many of the fields that are in DB

structures across the world, such as telephone numbers, zip codes and postcodes,

as well as credit card numbers and other card type numbers like Social Security

numbers and Medicare numbers where these numbers actually need to conform to a

checksum test of the Luhn algorithm.

In most cases, the substitution files will need to be fairly extensive so having large

substitution datasets as well the ability to apply customized data substitution sets

should be a key element of the evaluation criteria for any data masking solution.

Shuffling

The shuffling method is a very common form of data obfuscation. It is similar to the

substitution method but it derives the substitution set from the same column of data

that is being masked. In very simple terms, the data is randomly shuffled within the

column. However, if used in isolation, anyone with any knowledge of the original data

can then apply a "What If" scenario to the data set and then piece back together a

real identity. The shuffling method is also open to being reversed if the shuffling

algorithm can be deciphered.

Shuffling, however, has some real strengths in certain areas. If for instance, the end

of year figures for financial information in a test data base, one can mask the names

of the suppliers and then shuffle the value of the accounts throughout the masked

database. It is highly unlikely that anyone, even someone with intimate knowledge of

the original data could derive a true data record back to its original values.

Number and date variance

The numeric variance method is very useful for applying to financial and date driven

information fields. Effectively, a method utilising this manner of masking can still

leave a meaningful range in a financial data set such as payroll. If the variance

https://en.wikipedia.org/wiki/Telephone_number
https://en.wikipedia.org/wiki/ZIP_Code
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Medicare_(United_States)
https://en.wikipedia.org/wiki/Luhn_algorithm

applied is around +/- 10% then it is still a very meaningful data set in terms of the

ranges of salaries that are paid to the recipients.

The same also applies to the date information. If the overall data set needs to retain

demographic and actuarial data integrity, then applying a random numeric variance

of +/- 120 days to date fields would preserve the date distribution, but it would still

prevent traceability back to a known entity based on their known actual date or birth

or a known date value for whatever record is being masked.

Encryption

Encryption is often the most complex approach to solving the data masking problem.

The encryption algorithm often requires that a "key" be applied to view the data

based on user rights. This often sounds like the best solution, but in practice the key

may then be given out to personnel without the proper rights to view the data. This

then defeats the purpose of the masking exercise. Old databases may then get

copied with the original credentials of the supplied key and the same uncontrolled

problem lives on.

Recently, the problem of encrypting data while preserving the properties of the

entities got recognition and a newly acquired interest among the vendors and

academia. New challenge gave birth to algorithms called FPE (format preserving

encryption). They are based on the accepted AES algorithmic mode that makes

them being recognized by NIST. [10]

Nulling out or deletion

Sometimes a very simplistic approach to masking is adopted through applying a null

value to a particular field. The null value approach is really only useful to prevent

visibility of the data element.

In almost all cases, it lessens the degree of data integrity that is maintained in the

masked data set. It is not a realistic value and will then fail any application logic

validation that may have been applied in the front end software that is in the system

under test. It also highlights to anyone that wishes to reverse engineer any of the

identity data that data masking has been applied to some degree on the data set.

Masking out

Character scrambling or masking out of certain fields is also another simplistic yet

very effective method of preventing sensitive information to be viewed. It is really an

extension of the previous method of nulling out, but there is a greater emphasis on

keeping the data real and not fully masked all together.

This is commonly applied to credit card data in production systems. For instance, an

operator at a call centre might bill an item to a customer's credit card. They then

quote a billing reference to the card with the last 4 digits of XXXX XXXXxxxx 6789.

As an operator they can only see the last 4 digits of the card number, but once the

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Format_Preserving_Encryption
http://www.nist.gov/
https://en.wikipedia.org/wiki/Data_masking#cite_note-10
https://en.wikipedia.org/wiki/Data_integrity

billing system passes the customer's details for charging, the full number is revealed

to the payment gateway systems.

This system is not very effective for test systems, but it is very useful for the billing

scenario detailed above. It is also commonly known as a dynamic data masking

method.[11][12]

Additional complex rules

Additional rules can also be factored into any masking solution regardless of how the

masking methods are constructed. Product agnostic White Papers[13] are a good

source of information for exploring some of the more common complex requirements

for enterprise masking solutions, which include Row Internal Synchronisation Rules,

Table Internal Synchronisation Rules and Table[14] to Table Synchronisation Rules.

Different types[edit]

Data masking is tightly coupled with building test data. Two major types of data

masking are static and on-the-fly data masking. [15]

Static data masking

Static Data Masking is usually performed on the golden copy of the database, but

can also be applied to values in other sources, including files. In DB environments,

production DBAs will typically load table backups to a separate environment, reduce

the dataset to a subset that holds the data necessary for a particular round of testing

(a technique called "subsetting"), apply data masking rules while data is in stasis,

apply necessary code changes from source control, and/or and push data to desired

environment.[16]

Deterministic data masking

Deterministic Masking is the process of replacing a value in a column with the same

value whether in the same row, the same table, the same database/schema and

between instances/servers/database types. Example: A database has multiple

tables, each with a column that has first names. With deterministic masking the first

name will always be replaced with the same value – ―Lynne‖ will always become

―Denise‖ – wherever ―Lynne‖ may be in the database.[17]

Statistical data obfuscation

There are also alternatives to the static data masking that rely on stochastic

perturbations of the data that preserve some of the statistical properties of the

original data. Examples of statistical data obfuscation methods include differential

privacy [18] and the DataSifter method .[19]

On-the-fly data masking

https://en.wikipedia.org/wiki/Data_masking#cite_note-11
https://en.wikipedia.org/wiki/Data_masking#cite_note-11
https://en.wikipedia.org/wiki/Data_masking#cite_note-13
https://en.wikipedia.org/wiki/Data_masking#cite_note-14
https://en.wikipedia.org/w/index.php?title=Data_masking&action=edit§ion=10
https://en.wikipedia.org/wiki/Data_masking#cite_note-15
https://en.wikipedia.org/wiki/Data_masking#cite_note-16
https://en.wikipedia.org/wiki/Data_masking#cite_note-17
https://en.wikipedia.org/wiki/Differential_privacy
https://en.wikipedia.org/wiki/Differential_privacy
https://en.wikipedia.org/wiki/Data_masking#cite_note-18
https://en.wikipedia.org/wiki/Data_masking#cite_note-19

On-the-Fly Data Masking[20] happens in the process of transferring data from

environment to environment without data touching the disk on its way. The same

technique is applied to "Dynamic Data Masking" but one record at a time. This type

of data masking is most useful for environments that do continuous deployments as

well as for heavily integrated applications. Organizations that employ continuous

deployment or continuous delivery practices do not have the time necessary to

create a backup and load it to the golden copy of the database. Thus, continuously

sending smaller subsets (deltas) of masked testing data from production is

important. In heavily integrated applications, developers get feeds from other

production systems at the very onset of development and masking of these feeds is

either overlooked and not budgeted until later, making organizations non-compliant.

Having on-the-fly data masking in place becomes essential.

Dynamic data masking

Dynamic Data Masking is similar to On-the-Fly Data Masking but it differs in the

sense that On-the-Fly Data Masking is about copying data from one source to

another source so that the latter can be shared. Dynamic data masking happens at

runtime, dynamically, and on-demand so that there doesn't need to be a second data

source where to store the masked data dynamically.

Dynamic data masking enables several scenarios, many of which revolve around

strict privacy regulations e.g. the Singapore Monetary Authority or the Privacy

regulations in Europe.

Dynamic data masking is attribute-based and policy-driven. Policies include:

Doctors can view the medical records of patients they are assigned to (data filtering)

Doctors cannot view the SSN field inside a medical record (data masking).

Dynamic data masking can also be used to encrypt or decrypt values on the fly

especially when using format-preserving encryption.

Several standards have emerged in recent years to implement dynamic data filtering

and masking. For instance, XACML policies can be used to mask data inside

databases.

There are five possible technologies to apply Dynamic data masking:

In the Database: Database receives the SQL and applies rewrite to returned masked

result set. Applicable for developers & DBAs but not for applications (because

connection pools, application caching and data-bus hide the application user identity

from the database and can also cause application data corruption).

Network Proxy between the application and the database: Captures the SQL and

applies rewrite on the select request. Applicable for developers & DBAs with simple

'select'requests but not for stored procedures (which the proxy only identifies the

exec.) and applications (because connection pools, application caching and data-bus

https://en.wikipedia.org/wiki/Data_masking#cite_note-20
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Attribute-Based_Access_Control
https://en.wikipedia.org/wiki/Format-preserving_encryption
https://en.wikipedia.org/wiki/XACML

hide the application user identity from the database and can also cause application

data corruption).

Network Proxy between the end-user and the application: identifying text strings and

replacing them. This method is not applicable for complex applications as it will

easily cause corruption when the real-time string replacement is unintentionally

applied.

Code changes in the applications & XACML: code changes are usually hard to

perform, impossible to maintain and not applicable for packaged applications. Some

applications like Oracle E- Business Suite, PeopleSoft and JD Edwards allow adding

an API code to their application code to enable dynamic data masking.[21]

Within the application run-time: By instrumenting the application run-time, policies

are defined to rewrite the result set returned from the data sources, while having full

visibility to the application user. This method is the only applicable way to

dynamically mask complex applications as it enables control to the data request,

data result and user result.

Supported by a browser plugin: In the case of SaaS or local web applications,

browser add-ons can be configured to mask data fields corresponding to

precise CSS Selectors. This can either be accomplished by marking sensitive fields

in the application, for example by a HTML class or by finding the right selectors that

identify the fields to be obfuscated or masked.

Data masking and the cloud

In latest years, organizations develop their new applications in the cloud more and

more often, regardless of whether final applications will be hosted in the cloud or on-

premises. The cloud solutions as of now allow organizations to use Infrastructure as

a Service or IaaS, Platform as a Service or PaaS, and Software as a Service

or SaaS. There are various modes of creating test data and moving it from on-

premises databases to the cloud, or between different environments within the cloud.

Dynamic Data Masking becomes even more critical in cloud when customers need

to protecting PII data while relying on cloud providers to administer their

databases. [22] Data masking invariably becomes the part of these processes in

SDLC as the development environments' SLAs are usually not as stringent as the

production environments' SLAs regardless of whether application is hosted in the

cloud or on-premises.

https://en.wikipedia.org/wiki/Data_masking#cite_note-21
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Selector
https://en.wikipedia.org/wiki/HTML_attribute#Description
https://en.wikipedia.org/wiki/IaaS
https://en.wikipedia.org/wiki/PaaS
https://en.wikipedia.org/wiki/SaaS
https://en.wikipedia.org/wiki/Data_masking#cite_note-22

Unit-III

SIMD Interconnection network:

Dynamic network analysis

(DNA) is an emergent scientific field that brings together traditional social network

analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS)

within network science and network theory.

There are two aspects of this field. The first is the statistical analysis of DNA data.

The second is the utilization of simulation to address issues of network dynamics.

DNA networks vary from traditional social networks in that they are larger, dynamic,

multi-mode, multi-plex networks, and may contain varying levels of uncertainty. The

main difference of DNA to SNA is that DNA takes interactions of social features

conditioning structure and behavior of networks into account. DNA is tied to temporal

analysis but temporal analysis is not necessarily tied to DNA, as changes in

networks sometimes result from external factors which are independent of social

features found in networks. One of the most notable and earliest of cases in the use

of DNA is in Sampson's monastery study, where he took snapshots of the same

network from different intervals and observed and analyzed the evolution of the

network.[1] An early study of the dynamics of link utilization in very large-scale

complex networks provides evidence of dynamic centrality, dynamic motifs, and

cycles of social interactions.[2][3]

DNA statistical tools are generally optimized for large-scale networks and admit the

analysis of multiple networks simultaneously in which, there are multiple types

of nodes (multi-node) and multiple types of links (multi-plex). Multi-node multi-plex

networks are generally referred to as meta-networks or high-dimensional networks.

In contrast, SNA statistical tools focus on single or at most two mode data and

facilitate the analysis of only one type of link at a time.

DNA statistical tools tend to provide more measures to the user, because they have

measures that use data drawn from multiple networks simultaneously. Latent space

models (Sarkar and Moore, 2005)[4] and agent-based simulation are often used to

examine dynamic social networks (Carley et al., 2009).[5] From a computer

simulation perspective, nodes in DNA are like atoms in quantum theory, nodes can

be, though need not be, treated as probabilistic. Whereas nodes in a traditional SNA

model are static, nodes in a DNA model have the ability to learn. Properties change

over time; nodes can adapt: A company's employees can learn new skills and

increase their value to the network; or, capture one terrorist and three more are

forced to improvise. Change propagates from one node to the next and so on. DNA

https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Link_analysis
https://en.wikipedia.org/wiki/Social_simulation
https://en.wikipedia.org/wiki/Multi-agent_systems
https://en.wikipedia.org/wiki/Network_science
https://en.wikipedia.org/wiki/Network_theory
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Uncertainty
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-1
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-2
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-2
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-social-4
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-Etiology-5
https://en.wiktionary.org/wiki/static

adds the element of a network's evolution and considers the circumstances under

which change is likely to occur.

An example of a multi-entity, multi-network, dynamic network diagram

There are three main features to dynamic network analysis that distinguish it from

standard social network analysis. First, rather than just using social networks, DNA

looks at meta-networks. Second, agent-based modeling and other forms of

simulations are often used to explore how networks evolve and adapt as well as the

impact of interventions on those networks. Third, the links in the network are not

binary; in fact, in many cases they represent the probability that there is a link.

Meta-network

A meta-network is a multi-mode, multi-link, multi-level network. Multi-mode means

that there are many types of nodes; e.g., nodes people and locations. Multi-link

means that there are many types of links; e.g., friendship and advice. Multi-level

means that some nodes may be members of other nodes, such as a network

composed of people and organizations and one of the links is who is a member of

which organization.

While different researchers use different modes, common modes reflect who, what,

when, where, why and how. A simple example of a meta-network is the PCANS

formulation with people, tasks, and resources.[6] A more detailed formulation

considers people, tasks, resources, knowledge, and organizations.[7] The ORA tool

was developed to support meta-network analysis.[8]

Illustrative problems that people in the DNA area work on

Developing metrics and statistics to assess and identify change within and across

networks.

Developing and validating simulations to study network change, evolution,

adaptation, decay. See Computer simulation and organizational studies

https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-pcans-6
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-smartAgents-7
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-toolkit-8
https://en.wikipedia.org/wiki/Computer_simulation_and_organizational_studies
https://en.wikipedia.org/wiki/File:DynamicNetworkAnalysisExample.jpg

Developing and testing theory of network change, evolution, adaptation, decay[9]

Developing and validating formal models of network generation and evolution

Developing techniques to visualize network change overall or at the node or group

level

Developing statistical techniques to see whether differences observed over time in

networks are due to simply different samples from a distribution of links and nodes or

changes over time in the underlying distribution of links and nodes

Developing control processes for networks over time

Developing algorithms to change distributions of links in networks over time

Developing algorithms to track groups in networks over time

Developing tools to extract or locate networks from various data sources such as

texts

Developing statistically valid measurements on networks over time

Examining the robustness of network metrics under various types of missing data

Empirical studies of multi-mode multi-link multi-time period networks

Examining networks as probabilistic time-variant phenomena

Forecasting change in existing networks

Identifying trails through time given a sequence of networks

Identifying changes in node criticality given a sequence of networks anything else

related to multi-mode multi-link multi-time period networks

Studying random walks on temporal networks[10]

Quantifying structural properties of contact sequences in dynamic networks, which

influence dynamical processes[11]

Assessment of covert activity[12] and dark networks[13]

Citationalanalysis[14]

Social media analysis[15]

Assessment of public health systems[16]

Analysis of hospital safety outcomes[17]

Assessment of the structure of ethnic violence from news data[18]

Assessment of terror groups[19]

Online social decay of social interactions[20]

https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-9
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-rw-10
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-betweenness-11
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-covert-12
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-dark-13
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-citation-14
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-socialmedia-15
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-health-16
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-hospital-17
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-ethnic-18
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-terror-19
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-socialdecay-20

Visualization of large financial networks over time[21]

Modelling of classroom interactions in schools[

Cube interconnection network,

The minimum distance between a pair of nodes is the minimum number of

communication links (hops) that data from one of the nodes must traverse in order to

reach the other node. 12. Cube interconnection network: It is a 3

dimensional interconnection network. ... At node 1, t0 is set to 0; thus T now

becomes equal to 100.7 April 2015

Shuffle exchange and Omega Network

In order to provide full connectivity the Benes network requires 2log2(N) + 1 stages,

each with N/2 switch-nodes. However, it is possible to reduce the cost of a multi-

stage network still further by using a class of networks, which are not full connection

networks, known as shuffle-exchange networks. In general, shuffle-exchange

networks consist of a sequence of log2(N) exchange permutations interspersed with

shuffle or butterfly permutations.

On first inspection the following discussion on shuffle-exchange permutations may

appear to be simply a notational convenience, but it is important to understand how a

sequence of shuffle and exchange permutations can together form a useful network.

The key to understanding multi-stage permutation networks is to consider the effect

each successive permutation has on the label of an object in passage through the

network. Assume that S is the label of an object entering the network, and D is the

label of the destination of that object. We associate a temporary label L with the

object, and this is initially set to S. If we can modify L by a sequence of permutations

so that it becomes equal to D then the object will arrive at its destination.

Since the E1 permutation provides us with the choice of inverting the least significant

bit of the input label or leaving it intact, it is possible to use the E1 permutation to

make the least significant bit in L equal to the least significant bit in D. This is the

basic step in converting from L to D, and the choice of ε1 or I permutation

determines the switch-node setting in the general exchange box of Figure 1. The

next step is to expose the next bit in L to the E1 permutation, and this is done most

simply by shifting L by one bit. This is directly equivalent to a perfect-shuffle

permutation on all labels L in the range 0 to N, as shown for N=8 in Figure 2.

After n=log2N applications of the shuffle and exchange permutations all bits in L will

have been changed, and L will be equal to D. As a direct consequence of this, the

object located at label L will have been routed to the output port identified by D, and

the network will have performed its function.

A number of important multi-stage shuffle-exchange networks have been devised.

The banyan, omega and indirect binary n-cube networks are discussed in the next

section, Shuffle Exchange Network Examples

https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-dnb-21
https://en.wikipedia.org/wiki/Dynamic_network_analysis#cite_note-edu-22

Figure 1. Generalised exchange switch mappings

Figure 2. The shuffle permutation for N = 8

SIMD matrix multiplication

I am currently reading an article on github about performance optimisation using

Clang's extended vector syntax. The author gives the following code snippet:

The templated code below implements the innermost loops that calculate a patch of

size regA x regB in matrix C. The code loads regA scalars from matrixA and regB

SIMD-width vectors from matrix B. The program uses Clang's extended vector

syntax.

/// Compute a RAxRB block of C using a vectorized dot product, where RA is the

/// number of registers to load from matrix A, and RB is the number of registers

/// to load from matrix B.

template<unsigned regsA, unsigned regsB>

voidmatmul_dot_inner(int k, const float *a, intlda, const float *b, intldb,

float *c, intldc) {

float8csum[regsA][regsB] = {{0.0}};

for (int p = 0; p < k; p++) {

// Perform the DOT product.

for (int bi = 0; bi <regsB; bi++) {

float8 bb = LoadFloat8(&B(p, bi * 8));

for (intai = 0; ai<regsA; ai++) {

float8aa = BroadcastFloat8(A(ai, p));

csum[ai][bi] += aa * bb;

}

}

}

// Accumulate the results into C.

for (intai = 0; ai<regsA; ai++) {

for (int bi = 0; bi <regsB; bi++) {

AdduFloat8(&C(ai, bi * 8), csum[ai][bi]);

}

}

}

The code, outlines below, confuses me the most. I read the full article and

understood the logic behind using blocking and calculating a small patch, but I can't

entirely understand what does this bit means:

// Perform the DOT product.

for (int bi = 0; bi <regsB; bi++) {

float8 bb = LoadFloat8(&B(p, bi * 8)); //the pointer to the range of values?

for (intai = 0; ai<regsA; ai++) {

float8aa = BroadcastFloat8(A(ai, p));

csum[ai][bi] += aa * bb;

}

}

}

Multiprocessor Architecture:

A multiprocessor system is defined as "a system with more than one processor",

and, more precisely, "a number of central processing units linked together to enable

parallel processing to take place".[1][2][3]

The key objective of a multiprocessor is to boost a system's execution speed. The

other objectives are fault tolerance and application matching.[4]

The term "multiprocessor" can be confused with the term "multiprocessing". While

multiprocessing is a type of processing in which two or more processors work

together to execute multiple programs simultaneously, multiprocessor refers to a

hardware architecture that allows multiprocessing.[5]

Multiprocessor systems are classified according to how processor memory access is

handled and whether system processors are of a single type or various ones.

Multiprocessor system types

There are many types of multiprocessor systems:

Loosely coupled multiprocessor system

Tightly coupled multiprocessor system

Homogeneous multiprocessor system

Heterogeneous multiprocessor system

Shared memory multiprocessor system

Distributed memory multiprocessor system

Uniform memory access (UMA) system

cc–NUMA system

https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-1
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-1
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-3
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-4
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-5

Hybrid system – shared system memory for global data and local memory for local

data

Loosely-coupled (distributed memory) multiprocessor system

Loosely Coupled Multiprocessor System

In loosely-coupled multiprocessor systems, each processor has its own local

memory, input/output (I/O) channels, and operating system. Processors exchange

data over a high-speed communication network by sending messages via a

technique known as "message passing". Loosely-coupled multiprocessor systems

are also known as distributed-memory systems, as the processors do not share

physical memory and have individual I/O channels.

System characteristics

These systems are able to perform multiple-instructions-on-multiple-data (MIMD)

programming.

This type of architecture allows parallel processing.

The distributed memory is highly scalable.

Tightly-coupled (shared memory) multiprocessor system

Multiprocessor system with a shared memory closely connected to the processors.

A symmetric multiprocessing system is a system with centralized shared memory

called main memory (MM) operating under a single operating system with two or

more homogeneous processors.

There are two types of systems:

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/File:Loosely_Coupled_Multiprocessor_System.svg

Uniform memory-access (UMA) system

NUMA system

Uniform memory access (UMA) system

Heterogeneous multiprocessing system

Symmetric multiprocessing system (SMP)

Heterogeneous multiprocessor system

A heterogeneous multiprocessing system contains multiple, but not homogeneous,

processing units – central processing units (CPUs), graphics processing units

(GPUs), digital signal processors (DSPs), or any type of application-specific

integrated circuits (ASICs). The system architecture allows any accelerator – for

instance, a graphics processor – to operate at the same processing level as the

system's CPU.

Symmetric multiprocessor system

https://en.wikipedia.org/wiki/Heterogeneous_System_Architecture

Symmetric multiprocessing system

Systems operating under a single OS (operating system) with two or more

homogeneous processors and with a centralized shared main memory.

A symmetric multiprocessor system (SMP) is a system with a pool of homogeneous

processors running under a single OS with a centralized, shared main memory. Each

processor, executing different programs and working on different sets of data, has

the ability to share common resources (memory, I/O device, interrupt system, and so

on) that are connected using a system bus, a crossbar, or a mix of the two, or an

address bus and data crossbar.

Each processor has its own cache memory that acts as a bridge between the

processor and main memory. The function of the cache is to alleviate the need for

main-memory data access, thus reducing system-bus traffic.

Use of shared memory allows for a uniform memory-access time (UMA).

cc-NUMA system

cc-NUMA System

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/File:Cc-NUMA_System.svg

cc-NUMA Remote Memory Read

It is known that the SMP system has limited scalability. To overcome this limitation,

the architecture called "cc-NUMA" (cache coherency–non-uniform memory access)

is normally used. The main characteristic of a cc-NUMA system is having shared

global memory that is distributed to each node, although the effective "access" a

processor has to the memory of a remote component subsystem, or "node", is

slower compared to local memory access, which is why the memory access is "non-

uniform".

A cc–NUMA system is a cluster of SMP systems – each called a "node", which can

have a single processor, a multi-core processor, or a mix of the two, of one or other

kinds of architecture – connected via a high-speed "connection network" that can be

a "link" that can be a single or double-reverse ring, or multi-ring, point-to-point

connections,[6][7] or a mix of these (e.g. IBM Power Systems[6][8]), bus

interconnection (e.g. NUMAq[9]), "crossbar", "segmented bus" (NUMA Bull HN ISI

ex Honeywell,[10]) "mesh router", etc.

cc-NUMA is also called "distributed shared memory" (DSM) architecture.[11]

The difference in access times between local and remote memory can be also an

order of magnitude, depending on the kind of connection network used (faster in

segmented bus, crossbar, and point-to-point interconnection; slower in serial rings

connection).

Examples of interconnection

https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-auto-6
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-auto-6
https://en.wikipedia.org/wiki/IBM_Power_Systems
https://en.wikipedia.org/wiki/IBM_Power_Systems
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-8
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-9
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-10
https://en.wikipedia.org/wiki/Mesh_networking
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-11
https://en.wikipedia.org/wiki/File:Cc-NUMA_Remote_Memory_Read.svg

Double-reverse ring

Segmented Bus

Crossbar

To overcome this limit, a large remote cache (see Remote cache) is normally used.

With this solution, the cc-NUMA system becomes very close to a large SMP system.

Tightly-coupled versus loosely-coupled architecture

Both architectures have trade-offs which may be summarized as follows:

https://en.wikipedia.org/wiki/Cache_memory#Directory-based_cache_coherence_%E2%80%93_message-passing
https://en.wikipedia.org/wiki/File:Double-reverse_ring.svg
https://en.wikipedia.org/wiki/File:Segmented_Bus.svg
https://en.wikipedia.org/wiki/File:Crossbar.svg
https://en.wikipedia.org/wiki/File:Double-reverse_ring.svg
https://en.wikipedia.org/wiki/File:Segmented_Bus.svg
https://en.wikipedia.org/wiki/File:Crossbar.svg
https://en.wikipedia.org/wiki/File:Double-reverse_ring.svg
https://en.wikipedia.org/wiki/File:Segmented_Bus.svg
https://en.wikipedia.org/wiki/File:Crossbar.svg

Loosely-coupled architectures feature high performances of each individual

processor but do not enable for easy real-time balancing of the load among

processors.

Tightly-coupled architectures feature easy load-balancing and distribution among

processors but suffer from the bottleneck consisting in the sharing of common

resources through one or more buses.

Multiprocessor system featuring global data multiplication

An intermediate approach, between those of the two previous architectures, is

having common resources and local resources, such as local memories (LM), in

each processor.

The common resources are accessible from all processors via the system bus, while

local resources are only accessible to the local processor. Cache memories can be

viewed in this perspective as local memories.

This system (patented by F. Zulian [12]), used on the DPX/2 300 Unix based system

(Bull Hn Information Systems Italia (ex Honeywell)),[13][14] is a mix of tightly and

loosely coupled systems and makes use of all the advancements of these two

architectures.

The local memory is divided into two sectors, global data (GD) and local data (LD).

The basic concept of this architecture is to have global data, which is modifiable

information, accessible by all processors. This information is duplicated and stored in

each local memory of each processor.

Each time the global data is modified in a local memory, a hardware write-

broadcasting is sent to the system bus to all other local memories to maintain the

global data coherency. Thus, global data may be read by each processor accessing

its own local memory without involving the system bus. System bus access is only

required when global data is modified in a local memory to update the copy of this

data stored in the other local memories.

Local data can be exchanged in a loosely coupled system via message-passing

https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-12
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-13
https://en.wikipedia.org/wiki/Multiprocessor_system_architecture#cite_note-13
https://en.wikipedia.org/wiki/Message-passing

Multiprocessor System Featuring Global Data Multiplication

Multiprocessor System Featuring Global Data Multiplation - Global Data Write-

Broadcasting

Tightly and loosely coupled multiprocessors.

Loosely Coupled Multiprocessor System:

It is a type of multiprocessing system in which, There is distributed memory instead

of shared memory. In loosely coupled multiprocessor system, data rate is low rather

than tightly coupled multiprocessor system. In loosely coupled multiprocessor

system, modules are connected through MTS (Message transfer system) network.

https://en.wikipedia.org/wiki/File:Multiprocessor_System_Featuring_Global_Data_Multiplication.svg
https://en.wikipedia.org/wiki/File:Multiprocessor_System_-_Global_Data_Write-Broadcasting.svg
https://en.wikipedia.org/wiki/File:Multiprocessor_System_Featuring_Global_Data_Multiplication.svg
https://en.wikipedia.org/wiki/File:Multiprocessor_System_-_Global_Data_Write-Broadcasting.svg

Tightly Coupled Multiprocessor System:

It is a type of multiprocessing system in which, There is shared memory. In tightly

coupled multiprocessor system, data rate is high rather than loosely coupled

multiprocessor system. In tightly coupled multiprocessor system, modules are

connected through PMIN, IOPIN and ISIN networks.

Let‘s study the difference between loosely coupled and tightly coupled

multiprocessor system:

S.NO LOOSELY COUPLED TIGHTLY COUPLED

1.

There is distributed memory in

loosely coupled multiprocessor

system.

There is shared memory, in

tightly coupled multiprocessor

system.

2.

Loosely Coupled Multiprocessor

System has low data rate.

Tightly coupled multiprocessor

system has high data rate.

3.

The cost of loosely coupled

multiprocessor system is less.

Tightly coupled multiprocessor

system is more costly.

4.

In loosely coupled multiprocessor

system, modules are connected

through Message transfer

system network.

While there is PMIN, IOPIN and

ISIN networks.

5.

In loosely coupled multiprocessor,

Memory conflicts don‘t take place.

While tightly coupled

multiprocessor system have

memory conflicts.

6.

Loosely Coupled Multiprocessor

system has low degree of

interaction between tasks.

Tightly Coupled multiprocessor

system has high degree of

interaction between tasks.

7.

In loosely coupled multiprocessor,

there is direct connection between

processor and I/O devices.

While in tightly coupled

multiprocessor, IOPIN helps

connection between processor

and I/O devices.

8.

Applications of loosely coupled

multiprocessor are in distributed

computing systems.

Applications of tightly coupled

multiprocessor are in parallel

processing systems.

Unit -IV

Multiprocessor scheduling strategies and deterministic scheduling models

Data are characteristics or information, usually numerical, that are collected through

observation.[1] In a more technical sense, data are a set of values

of qualitative or quantitative variables about one or more persons or objects, while

a datum (singular of data) is a single value of a single variable.[2]

Although the terms "data" and "information" are often used interchangeably, these

terms have distinct meanings. In some popular publications, data are sometimes

said to be transformed into information when they are viewed in context or in post-

analysis.[3] In academic treatments of the subject, however, data are simply units of

information. Data is employed in scientific research, businesses management (e.g.,

sales data, revenue, profits, stock price), finance, governance (e.g., crime

rates, unemployment rates, literacy rates), and in virtually every other form of human

organizational activity (e.g., censuses of the number of homeless people by non-

profit organizations).

Data are measured, collected and reported, and analyzed, whereupon it can

be visualized using graphs, images or other analysis tools. Data as a

general concept refers to the fact that some

existing information or knowledge is represented or coded in some form suitable for

better usage or processing. Raw data ("unprocessed data") is a collection

of numbers or characters before it has been "cleaned" and corrected by researchers.

Raw data needs to be corrected to remove outliers or obvious instrument or data

entry errors (e.g., a thermometer reading from an outdoor Arctic location recording a

tropical temperature). Data processing commonly occurs by stages, and the

"processed data" from one stage may be considered the "raw data" of the next

stage. Field data is raw data that is collected in an uncontrolled "in situ"

environment. Experimental data is data that is generated within the context of a

scientific investigation by observation and recording.

Data has been described as the new oil of the digital economy.[4][5]

Data documents

Whenever data needs to be registered, data exists in the form of a data documents.

Kinds of data documents include:

data repository

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Data#cite_note-1
https://en.wikipedia.org/wiki/Qualitative_property
https://en.wikipedia.org/wiki/Quantity
https://en.wikipedia.org/wiki/Variable_(research)
https://en.wikipedia.org/wiki/Data#cite_note-2
https://en.wikipedia.org/wiki/Data#cite_note-3
https://en.wikipedia.org/wiki/Scientific_research
https://en.wikipedia.org/wiki/Stock_price
https://en.wikipedia.org/wiki/Finance
https://en.wikipedia.org/wiki/Crime_rate
https://en.wikipedia.org/wiki/Crime_rate
https://en.wikipedia.org/wiki/Unemployment_rate
https://en.wikipedia.org/wiki/Literacy
https://en.wikipedia.org/wiki/Homelessness
https://en.wikipedia.org/wiki/Measurement
https://en.wikipedia.org/wiki/Data_reporting
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Code
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Raw_data
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Field_work
https://en.wikipedia.org/wiki/In_situ
https://en.wikipedia.org/wiki/Experimental_data
https://en.wikipedia.org/wiki/Petroleum
https://en.wikipedia.org/wiki/Digital_economy
https://en.wikipedia.org/wiki/Data#cite_note-4
https://en.wikipedia.org/wiki/Data#cite_note-4
https://en.wikipedia.org/wiki/Document

data study

data set

software

data paper

database

data handbook

data journal

Some of these data documents (data repositories, data studies, data sets and

software) are indexed in Data Citation Indexes, while data papers are indexed in

traditional bibliographic databases, e.g., Science Citation Index. See further.[14]

Data collection

Gathering data can be accomplished through a primary source (the researcher is the

first person to obtain the data) or a secondary source (the researcher obtains the

data that has already been collected by other sources, such as data disseminated in

a scientific journal). Data analysis methodologies vary and include data triangulation

and data percolation.[15] The latter offers an articulate method of collecting,

classifying and analyzing data using five possible angles of analysis (at least three)

in order to maximize the research's objectivity and permit an understanding of the

phenomena under investigation as complete as possible: qualitative and quantitative

methods, literature reviews (including scholarly articles), interviews with experts, and

computer simulation. The data are thereafter "percolated" using a series of pre-

determined steps so as to extract the most relevant information.

In other fields

Although data are also increasingly used in other fields, it has been suggested that

the highly interpretive nature of them might be at odds with the ethos of data as

"given". Peter Checkland introduced the term capta (from the Latin capere, ―to take‖)

to distinguish between an immense number of possible data and a sub-set of them,

to which attention is oriented.[16] Johanna Drucker has argued that since the

humanities affirm knowledge production as "situated, partial, and constitutive,"

using data may introduce assumptions that are counterproductive, for example that

phenomena are discrete or are observer-independent.[17] The term capta, which

emphasizes the act of observation as constitutive, is offered as an alternative

to data for visual representations in the humanities.

Data flow graphs

A data flow graph is a model of a program with no conditionals. In a high-level

programming language, a code segment with no conditionals—more precisely, with

only one entry and exit point—is known as a basic block. Fig. 5.4 shows a simple

https://en.wikipedia.org/w/index.php?title=Data_Citation_Index&action=edit&redlink=1
https://en.wikipedia.org/wiki/Science_Citation_Index
https://en.wikipedia.org/wiki/Data#cite_note-14
https://en.wikipedia.org/wiki/Data#cite_note-15
https://en.wikipedia.org/wiki/Peter_Checkland
https://en.wikipedia.org/wiki/Data#cite_note-16
https://en.wikipedia.org/wiki/Johanna_Drucker
https://en.wikipedia.org/wiki/Data#cite_note-17
https://www.sciencedirect.com/topics/computer-science/high-level-programming-language
https://www.sciencedirect.com/topics/computer-science/high-level-programming-language

basic block. As the C code is executed, we would enter this basic block at the

beginning and execute all the statements.

Before we are able to draw the data flow graph for this code, we need to modify it

slightly. There are two assignments to the variable x—it appears twice on the left

side of an assignment. We need to rewrite the code in single-assignment form, in

which a variable appears only once on the left side. Because our specification is C

code, we assume that the statements are executed sequentially, so that any use of a

variable refers to its latest assigned value. In this case, x is not reused in this block

(presumably it is used elsewhere), so we just have to eliminate the multiple

assignment to x. The result is shown in Fig. 5.5 where we have used the names x1

and x2 to distinguish the separate uses of x.

The single-assignment form is important because it allows us to identify a unique

location in the code where each named location is computed. As an introduction to

the data flow graph, we use two types of nodes in the graph—round nodes denote

operators and square nodes represent values. The value nodes may be either inputs

to the basic block, such as a and b, or variables assigned to within the block, such

as w and x1. The data flow graph for our single-assignment code is shown

in Fig. 5.6. The single-assignment form means that the data flow graph is acyclic—if

we assigned to x multiple times, then the second assignment would form a cycle in

the graph including x and the operators used to compute x. Keeping the data flow

graph acyclic is important in many types of analyses we want to do on the graph. (Of

course, it is important to know whether the source code actually assigns to a variable

multiple times, because some of those assignments may be mistakes. We consider

the analysis of source code for proper use of assignments in Section 5.5.)

Sign in to download full-size image

Figure 5.6. An extended data flow graph for our sample basic block.

The data flow graph is generally drawn in the form shown in Fig. 5.7. Here, the

variables are not explicitly represented by nodes. Instead, the edges are labeled with

the variables they represent. As a result, a variable can be represented by more than

one edge. However, the edges are directed and all the edges for a variable must

come from a single source. We use this form for its simplicity and compactness.

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fcomputer-science%2Fdata-flow-graph

Sign in to download full-size image

Figure 5.7. Standard data flow graph for our sample basic block.

The data flow graph for the code makes the order in which the operations are

performed in the C code much less obvious. This is one of the advantages of the

data flow graph. We can use it to determine feasible reorderings of the operations,

which may help us to reduce pipeline or cache conflicts. We can also use it when the

exact order of operations simply does not matter. The data flow graph defines a

partial ordering of the operations in the basic block. We must ensure that a value is

computed before it is used, but generally there are several possible orderings of

evaluating expressions that satisfy this requirement.

5.3.2 Control/data flow graphs

A CDFG uses a data flow graph as an element, adding constructs to describe

control. In a basic CDFG, we have two types of nodes: decision nodes and data flow

nodes. A data flow node encapsulates a complete data flow graph to represent a

basic block. We can use one type of decision node to describe all the types of

control in a sequential program. (The jump/branch is, after all, the way we implement

all those high-level control constructs.)

Fig. 5.8 shows a bit of C code with control constructs and the CDFG constructed

from it. The rectangular nodes in the graph represent the basic blocks. The basic

blocks in the C code have been represented by function calls for simplicity. The

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fcomputer-science%2Fdata-flow-graph

diamond-shaped nodes represent the conditionals. The node's condition is given by

the label, and the edges are labeled with the possible outcomes of evaluating the

condition.

The data flow graph is generally drawn in the form shown in Figure 5.7. Here, the

variables are not explicitly represented by nodes. Instead, the edges are labeled with

the variables they represent. As a result, a variable can be represented by more than

one edge. However, the edges are directed and all the edges for a variable must

come from a single source. We use this form for its simplicity and compactness.

Sign in to download full-size image

The data flow graph for the code makes the order in which the operations are

performed in the C code much less obvious. This is one of the advantages of the

data flow graph. We can use it to determine feasible reorderings of the operations,

which may help us to reduce pipeline or cache conflicts. We can also use it when the

exact order of operations simply doesn't matter. The data flow graph defines a partial

ordering of the operations in the basic block. We must ensure that a value is

computed before it is used, but generally there are several possible orderings of

evaluating expressions that satisfy this requirement.

Introduction to 8 Bit and 16 Bit

Microcontrollers are like small computers that can carry out small programs and are

often used for automation and robotics. The most popular to those who are just

starting out are 8 bit and 16 bit microcontrollers. The main difference between 8 bit

and 16 bit microcontrollers is the width of the data pipe. As you may have already

deduced, an 8 bit microcontroller has an 8 bit data pipe while a 16 bit microcontroller

has a 16 bit data pipe.

This fundamental difference between 8 bit and 16 bit microcontrollers is felt during

mathematical operations. A 16 bit number gives you a lot more precision than 8 bit

numbers. Although relatively rare, using an 8 bit microcontroller may not suffice the

required accuracy of the application. 16 bit microcontrollers are also more efficient in

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fcomputer-science%2Fdata-flow-graph

processing math operations on numbers that are longer than 8 bits. A 16 bit

microcontroller can automatically operate on two 16 bit numbers, like the common

definition of an integer. But when you are using an 8 bit microcontroller, the process

is not as straightforward. The functions implemented to operate on such numbers will

take additional cycles. Depending on how processing intensive your application is

and on how many calculations you do, this may affect the performance of the circuit.

Another key difference between 8 bit and 16 bit microcontrollers is in their timers. 8

bit microcontrollers can only use 8 bits, resulting in a final range of 0x00 – 0xFF (0-

255) every cycle. In contrast, 16 bit microcontrollers, with its 16 bit data width, has a

range of 0x0000 – 0xFFFF (0-65535) for every cycle. A longer timer maximum value

can surely come in handy in certain applications and circuits.

Initially, the price of 16 bit microcontrollers was way above that of 8 bit

microcontrollers. But as time progressed and designs improved, the price of 8 bit and

16 bit microcontrollers has reduced quite a lot. 8 bit microcontrollers can be

purchased dirt cheap. While 16 bit microcontroller cost more, prices tend to vary a lot

depending on the features that are included in the microcontroller

Intel Microprocessor Architecture and Register set

The Intel Core microarchitecture (previously known as the Next-Generation Micro-

Architecture) is a multi-core processor microarchitecture unveiled by Intel in Q1

2006. It is based on the Yonah processor design and can be considered an iteration

of the P6 microarchitecture introduced in 1995 with Pentium Pro. High power

consumption and heat intensity, the resulting inability to effectively increase clock

speed, and other shortcomings such as an inefficient pipeline were the primary

reasons why Intel abandoned the NetBurst microarchitecture and switched to a

completely different architectural design, delivering high efficiency through a small

pipeline rather than high clock speeds. The Core microarchitecture initially did not

reach the clock speeds of the NetBurst microarchitecture, even after moving

to 45 nm lithography. However after many generations of successor

microarchitectures which used Core as their basis (such as Nehalem, Sandy

Bridge and more), Intel managed to eventually surpass the clock speeds of Netburst

with the Devil's Canyon (Improved version of Haswell) microarchitecture reaching a

base frequency of 4 GHz and a maximum tested frequency of 4.4 GHz using 22 nm

lithography.

The first processors that used this architecture were code-named 'Merom', 'Conroe',

and 'Woodcrest'; Merom is for mobile computing, Conroe is for desktop systems, and

Woodcrest is for servers and workstations. While architecturally identical, the three

processor lines differ in the socket used, bus speed, and power consumption. The

initial mainstream Core-based processors were branded Pentium Dual-

Core or Pentium and low end branded Celeron; server and workstation Core-based

processors were branded Xeon, while Intel's first 64-bit desktop and mobile Core-

based processors were branded Core 2.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Yonah_(microprocessor)
https://en.wikipedia.org/wiki/P6_(microarchitecture)
https://en.wikipedia.org/wiki/Pentium_Pro
https://en.wikipedia.org/wiki/Clock_speed
https://en.wikipedia.org/wiki/Clock_speed
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/NetBurst_(microarchitecture)
https://en.wikipedia.org/wiki/45_nanometer
https://en.wikipedia.org/wiki/Lithography
https://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
https://en.wikipedia.org/wiki/Sandy_Bridge
https://en.wikipedia.org/wiki/Sandy_Bridge
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Merom_(microprocessor)
https://en.wikipedia.org/wiki/Conroe_(microprocessor)
https://en.wikipedia.org/wiki/Woodcrest_(microprocessor)
https://en.wikipedia.org/wiki/Pentium_Dual-Core
https://en.wikipedia.org/wiki/Pentium_Dual-Core
https://en.wikipedia.org/wiki/Pentium
https://en.wikipedia.org/wiki/Celeron
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Intel_Core#64-bit_Core_microarchitecture_based

Unit-V

Assembly language programming based on Intel 8085

Problem – Write an assembly language program to add two 8 bit numbers stored at

address 2050 and address 2051 in 8085 microprocessor. The starting address of the

program is taken as 2000.

Example –

Algorithm –

Load the first number from memory location 2050 to accumualtor.

Move the content of accumulator to register H.

Load the second number from memory location 2051 to accumaltor.

Then add the content of register H and accumulator using ―ADD‖ instruction and

storing result at 3050

The carry generated is recovered using ―ADC‖ command and is stored at memory

location 3051

Program –

MEMORY ADDRESS MNEMONICS COMMENT

2000 LDA 2050 A<-[2050]

2003 MOV H, A H<-A

2004 LDA 2051 A<-[2051]

2007 ADD H A<-A+H

2006 MOV L, A L←A

2007 MVI A 00 A←00

2009 ADC A A←A+A+carry

Explanation –

LDA 2050 moves the contents of 2050 memory location to the accumulator.

MOV H, A copies contents of Accumulator to register H to A

LDA 2051 moves the contents of 2051 memory location to the accumulator.

ADD H adds contents of A (Accumulator) and H register (F9). The result is stored in

A itself. For all arithmetic instructions A is by default an operand and A stores the

result as well

MOV L, A copies contents of A (34) to L

MVI A 00 moves immediate data (i.e., 00) to A

ADC A adds contents of A(00), contents of register specified (i.e A) and carry (1). As

ADC is also an arithmetic operation, A is by default an operand and A stores the

result as well

MOV H, A copies contents of A (01) to H

SHLD 3050 moves the contents of L register (34) in 3050 memory location and

contents of H register (01) in 3051 memory location

HLT stops executing the program and halts any further execution

Data transfer or transfer is any information that is transferred from one location to

another through some communication method. For example, with digital data

transmission data signals are sent and received using the binary code.

Another example is for this page to be visible, all text, images, and other data was

transferred over the Internet to your computer. For a file to appear on a USB drive, it

must first be copied or moved from the hard drive to the USB drive.

How is information transferred on the Internet

Data can be transferred to and from computers over the Internet using one of

following methods.

Send

If a user wants to transfer or send data to the Internet, they upload that data. Online

file storage, like a NAS or SAN, is often used to store uploaded data.

Receive

If a user wants to receive or pull data from the Internet, they download that data. The

data is often downloaded from a NAS or SAN file storage system.

Receive and send

It's also possible for users to upload and download data to and from other computers

directly over the Internet. Users can utilize peer-to-peer communication to transfer

files directly between computers, bypassing a file storage system.

What do I need to know about data transfer?

Data transfer refers to the secure exchange of large files between systems or

organizations. In an internal context, data transfer is often used as an alternative to a

holistic enterprise application integration system. However, data transfer is most

often used to share data securely among business partners, suppliers, or

government agencies for cooperative purposes.

What are the challenges of data transfer?

Data transfers are often used to share secure enterprise data with a business

partner. Because the data is moving beyond the enterprise perimeter, care must be

taken to secure the data. Besides security, another challenge of data transfer is

complexity. Data transfers involving hundreds or thousands of files require a

reporting and tracking component to make sure that data is copied completely and

accurately and also to create a historical record of what was transferred, including

metadata such as time, file size, and destination. Performance is also a concern as

data transfer often involves very large files that can take a long time to process.

https://www.computerhope.com/jargon/s/signal.htm
https://www.computerhope.com/jargon/b/binary.htm
https://www.computerhope.com/jargon/h/harddriv.htm
https://www.computerhope.com/jargon/j/jumpdriv.htm
https://www.computerhope.com/jargon/u/upload.htm
https://www.computerhope.com/jargon/n/nas.htm
https://www.computerhope.com/jargon/s/san.htm
https://www.computerhope.com/jargon/d/download.htm
https://www.computerhope.com/jargon/p/ptpcom.htm

What are the benefits of data transfer?

A secure data transfer process will ensure that organizations meet compliance

requirements. It will provide a record of the transactions so that the organization will

know exactly what information was shared and so that any anomalies can be

investigated. It will also provide a high degree of automation and performance

enhancement, thus minimizing costs to complete the transaction.

Functions of the arithmetic logic unit (ALU)

Jump to navigationJump to search

How does a CPU work?

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic

operations. It represents the fundamental building block of the central processing

unit (CPU) of a computer. Modern CPUs contain very powerful and complex ALUs.

In addition to ALUs, modern CPUs contain a control unit (CU).

Most of the operations of a CPU are performed by one or more ALUs, which load

data from input registers. A register is a small amount of storage available as part of

a CPU. The control unit tells the ALU what operation to perform on that data and the

ALU stores the result in an output register. The control unit moves the data between

these registers, the ALU, and memory.[1

What Is an ALU?

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic

operations. It represents the fundamental building block of the central processing

unit (CPU) of a computer. Modern CPUs contain very powerful and complex ALUs.

In addition to ALUs, modern CPUs contain a control unit (CU).

Most of the operations of a CPU are performed by one or more ALUs, which load

data from input registers. A register is a small amount of storage available as part of

a CPU. The control unit tells the ALU what operation to perform on that data, and the

https://computersciencewiki.org/index.php/Functions_of_the_arithmetic_logic_unit_(ALU)#mw-head
https://computersciencewiki.org/index.php/Functions_of_the_arithmetic_logic_unit_(ALU)#mw-head
https://computersciencewiki.org/index.php/File:Binary.png

ALU stores the result in an output register. The control unit moves the data between

these registers, the ALU, and memory.

How an ALU Works

An ALU performs basic arithmetic and logic operations. Examples of arithmetic

operations are addition, subtraction, multiplication, and division. Examples of logic

operations are comparisons of values such as NOT, AND, and OR.

All information in a computer is stored and manipulated in the form of binary

numbers, i.e. 0 and 1. Transistor switches are used to manipulate binary numbers

since there are only two possible states of a switch: open or closed. An open

transistor, through which there is no current, represents a 0. A closed transistor,

through which there is a current, represents a 1.

Operations can be accomplished by connecting multiple transistors. One transistor

can be used to control a second one - in effect, turning the transistor switch on or off

depending on the state of the second transistor. This is referred to as

a gate because the arrangement can be used to allow or stop a current.

The simplest type of operation is a NOT gate. This uses only a single transistor. It

uses a single input and produces a single output, which is always the opposite of the

input. This figure shows the logic of the NOT gate:

How a NOT gate processes binary data

Other gates consist of multiple transistors and use two inputs. The OR gate results in

a 1 if either the first or the second input is a 1. The OR gate only results in a 0 if both

inputs are 0. This figure shows the logic of the OR gate:

How an OR gate processes binary data

The AND gate results in a 1 only if both the first and second input are 1s. This figure

shows the logic of the AND gate:

How an AND gate processes binary data

The XOR gate, also pronounced X-OR gate, results in a 0 if both the inputs are 0 or

if both are 1. Otherwise, the result is a 1. This figure shows the logic of the XOR

gate:

How an XOR gate processes binary data.

Branch operations

A branch operations manager is the subordinate of a branch manager who is

delegated responsibility for all aspects of the office's technical and physical

infrastructure, often including the supervision of all support staff.

Branch operations managers have varied backgrounds. They may have expertise in

back-office operations, information technology, or other fields.

Responsibilities

A branch operations manager has responsibility for ensuring that financial advisors,

sales assistants, and other branch office staff have the tools and infrastructure to

perform their jobs and that this infrastructure is kept in working order. This

infrastructure includes, but is not limited to:

Communications

Workstations

PCs

Copiers and fax machines

Power

Heating, ventilation, and air conditioning (HVAC)

Building maintenance

Furniture

Real estate operations

https://www.thebalancecareers.com/financial-advisor-career-paths-1286989

Mailroom operations

Cashier operations

Branch operations managers also play an important liaison role with the central IT

and operations departments. They assist financial advisors and sales assistants with

problems that they cannot resolve on their own. Depending on the structure of the

firm, branch operations managers may or may not have either solid-line (primary) or

dotted-line (secondary) reporting relationships to the central operations area of the

firm.

Compensation

Branch operations managers are paid a salary and bonuses. Their bonus may be

tied partly to overall branch results, or it may not.

Career Progression

Depending on the structure of the firm, the next logical step up for a branch

operations manager might be as the supervisor of operations for a larger or more

prestigious office, or for a larger aggregation of offices within the firm‘s branch office

hierarchy, such as an office complex or a sales region. As a result, a willingness to

relocate often is required to facilitate career advancement.

Relocation also may be necessary as a result of the closure of underperforming

offices and the opening of new offices in geographic regions with sales growth or

anticipated sales growth. Lastly, since experienced branch operations personnel are

in demand throughout the securities brokerage industry, many opportunities to

advance by changing firms also exist.

There also are chances for advancement by exiting branch operations management

entirely. For example, one might have built the skill set necessary to win promotion

into a spot within the central operations or information technology organizations of

the firm.

Alternatively, the firsthand knowledge of workflows and processes that have been

gained by an experienced branch operations manager can prove to be invaluable for

financial management organizations that are involved in management reporting and

transfer pricing.

For example, at Merrill Lynch, when the retail product profitability group made a

significant push to upgrade its methodologies in the early 1990s and expand the

knowledge base of its staff, its manager actively recruited experienced operations

professionals to vastly increase the sophistication with which expenses were

analyzed and allocated.

https://www.thebalancecareers.com/executive-resume-example-2063175
https://www.thebalancecareers.com/merrill-lynch-principles-1286846

Looping Counting

Although every while loop has the same general form, while loops can be used to

serve a variety of different purposes. A common form of loop is the counting loop, in

which the loop repeats a fixed number of times.

Download count1.c and read it into an Emacs buffer. Compile and run the program.

The program will prompt you for an integer; try entering 10 the first time, 5 the

second time, and -5 the third time. Notice that the program prints out all of the

integers from 1 up to the one that you entered. If the integer that you enter is smaller

than 1, no integers are printed out.

The counting loop contained in count1.c is

printf("The integers from 1 up to %d are:\n", limit);

i = 1;

while (i<= limit) {

printf("%d ", i);

i = i + 1;

}

printf("\n");

A counting loop typically uses a variable to count from some initial value to some

final value. This variable is often called the index variable. In this example, the index

variable is i.

There are usually six components to a counting loop:

Setup statements. Statements before the loop that do something that needs to be

done exactly once before the loop starts. In this case, the setup statement is

printf("The integers from 1 up to %d are:\n", limit);

Index initialization statement. A statement before the loop that gives the index

variable its initial value. In this case, the initializing statement is

i = 1;

Index control expression. An expression that controls the loop by stopping it when

the index variable exceeds its limit. In this case, the index control expression is

(i<= limit)

https://www.cs.utah.edu/~zachary/isp/tutorials/counting/examples/count1.c#count1c

Body statements. Statements inside the body of the loop that do something with the

index variable each trip through the loop. In this case, the body statement is

printf("%d ", i);

Index update statement. A statement inside the body of the loop that changes the

value of the index variable each trip through the loop. In this case, the index update

statement is

i = i + 1;

Final statements. Statements after the loop that do something that needs to be done

exactly once after the loop stops. In this case, the final statement is

printf("\n");

A counting loop with always have an index initialization statement, an index control

expression, one or more body statements, and an index update statement. It will not

always have setup statements or final statements.

Exercises

Modify count1.c so that it allows the user to specify both the starting point and the

stopping point.

Modify count1.c so that it prints only the even numbers less than or equal to limit.

A Counting Loop: Factorial

Download count2.c and read it into an Emacs buffer. This program is divided into

a factorial function, which takes an integer n as its parameter and returns n!, and

a main function, which exercises factorial. We will focus on the factorial function.

The counting loop that appears in factorial is

product = 1;

i = 1;

while (i<= n) {

product = product * i;

i = i + 1;

}

https://www.cs.utah.edu/~zachary/isp/tutorials/counting/examples/count2.c#count2c

Indexing is a way to optimize the performance of a database by minimizing the

number of disk accesses required when a query is processed. It is a data structure

technique which is used to quickly locate and access the data in a database.

Indexes are created using a few database columns.

The first column is the Search key that contains a copy of the primary key or

candidate key of the table. These values are stored in sorted order so that the

corresponding data can be accessed quickly.

Note: The data may or may not be stored in sorted order.

The second column is the Data Reference or Pointer which contains a set of pointers

holding the address of the disk block where that particular key value can be found.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183525/Structure-of-an-Index-in-Database.jpg

The indexing has various attributes:

Access Types: This refers to the type of access such as value based search, range

access, etc.

Access Time: It refers to the time needed to find particular data element or set of

elements.

Insertion Time: It refers to the time taken to find the appropriate space and insert a

new data.

Deletion Time: Time taken to find an item and delete it as well as update the index

structure.

Space Overhead: It refers to the additional space required by the index.

In general, there are two types of file organization mechanism which are followed by

the indexing methods to store the data:

Sequential File Organization or Ordered Index File: In this, the indices are based on

a sorted ordering of the values. These are generally fast and a more traditional type

of storing mechanism. These Ordered or Sequential file organization might store the

data in a dense or sparse format:

Dense Index:

For every search key value in the data file, there is an index record.

This record contains the search key and also a reference to the first data record with

that search key value.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183521/Dense-Index.jpg

Sparse Index:

The index record appears only for a few items in the data file. Each item points to a

block as shown.

To locate a record, we find the index record with the largest search key value less

than or equal to the search key value we are looking for.

We start at that record pointed to by the index record, and proceed along with the

pointers in the file (that is, sequentially) until we find the desired record.

Clustered Indexing

When more than two records are stored in the same file these types of storing known

as cluster indexing. By using the cluster indexing we can reduce the cost of

searching reason being multiple records related to the same thing are stored at one

place and it also gives the frequent joing of more than two tables(records).

Clustering index is defined on an ordered data file. The data file is ordered on a non-

key field. In some cases, the index is created on non-primary key columns which

may not be unique for each record. In such cases, in order to identify the records

faster, we will group two or more columns together to get the unique values and

create index out of them. This method is known as the clustering index. Basically,

records with similar characteristics are grouped together and indexes are created for

these groups.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183518/Sparse-Index.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183518/Sparse-Index.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183518/Sparse-Index.jpg

For example, students studying in each semester are grouped together. i.e.

1st Semester students, 2nd semester students, 3rd semester students etc are

grouped.

Primary Indexing:

This is a type of Clustered Indexing wherein the data is sorted according to the

search key and the primary key of the database table is used to create the index. It is

a default format of indexing where it induces sequential file organization. As primary

keys are unique and are stored in a sorted manner, the performance of the

searching operation is quite efficient.

Non-clustered or Secondary Indexing

A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual

pointers or references to the location where the data is actually stored. Data is not

physically stored in the order of the index. Instead, data is present in leaf nodes. For

eg.the contents page of a book. Each entry gives us the page number or location of

the information stored. The actual data here(information on each page of the book) is

not organized but we have an ordered reference(contents page) to where the data

points actually lie. We can have only dense ordering in the non-clustered index as

sparse ordering is not possible because data is not physically organized accordingly.

It requires more time as compared to the clustered index because some amount of

extra work is done in order to extract the data by further following the pointer. In the

case of a clustered index, data is directly present in front of the index.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2016/07/cluster_index.png

Multilevel Indexing

With the growth of the size of the database, indices also grow. As the index is stored

in the main memory, a single-level index might become too large a size to store with

multiple disk accesses. The multilevel indexing segregates the main block into

various smaller blocks so that the same can stored in a single block. The outer

blocks are divided into inner blocks which in turn are pointed to the data blocks. This

can be easily stored in the main memory with fewer overheads.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2016/07/indexing3.png

Programming Techniques

Programming is a complex matter. Therefore, every technique that helps to simplify it

is very useful. In this article, we will consider simple and effective programming

techniques which will help to simplify the work of the programmer.

Nowadays, it‘s often being discussed the programming language which will be better

for students who learn how to program. I fact, the programming language is not

important because learning to program is learning to develop algorithmic thinking.

Programming techniques are almost in all aspects of our lives, starting from

subconscious mind programming techniques to computer programming. So, here is

a list of the most basic computer programming techniques. Some of them are

obvious and don‘t require to be described in detail.

In digital logic and computing, a counter is a device which stores (and sometimes

displays) the number of times a particular event or process has occurred, often in

relationship to a clock. The most common type is a sequential digital logic circuit with

an input line called the clock and multiple output lines. The values on the output lines

represent a number in the binary or BCD number system. Each pulse applied to the

clock input increments or decrements the number in the counter.

A counter circuit is usually constructed of a number of flip-flops connected in

cascade. Counters are a very widely used component in digital circuits, and are

manufactured as separate integrated circuits and also incorporated as parts of larger

integrated circuits.

Electronic counters

An electronic counter is a sequential logic circuit which has a clock input signal and a

group of output signals that represent an integer "counts" value. Upon each qualified

clock edge, the circuit will increment (or decrement, depending on circuit design) the

counts. When the counts have reached the end of the counting sequence (maximum

counts when incrementing; zero counts when decrementing), the next clock will

cause the counts to overflow or underflow and the counting sequence will start over.

Internally, counters use flip-flops to represent the current counts and to retain the

counts between clocks. Depending on the type of counter, the output may be a direct

representation of the counts (a binary number) or it may be encoded. Examples of

the latter include ring counters and counters that output Gray codes.

Many counters provide additional input signals to facilitate dynamic control of the

counting sequence, such as:

Reset - sets counts to zero. Some IC manufactures name it "clear" or "master reset

(MR)".

Enable - allows or inhibits counting.

Direction - determines whether counts will increment or decrement.

https://en.wikipedia.org/wiki/Digital_logic
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Event_(philosophy)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Clock
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_logic
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wiktionary.org/wiki/increment
https://en.wiktionary.org/wiki/decrement
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Sequential_logic

Data - parallel input data which represents a particular counts value.

Load - copies parallel input data to the counts.

Some counters provide a Terminal Count output which indicates that the next clock

will cause overflow or underflow. This is commonly used to implement counter

cascading (combining two or more counters to create a single, larger counter), by

connecting the Terminal Count output of one counter to the Enable input of the next

counter.

The modulus of a counter is the number of states in its count sequence. The

maximum possible modulus is determined by the number of flip-flops. For example,

a four-bit counter can have a modulus of up to 16 (2^4).

Counters are generally classified as either synchronous or asynchronous. In

synchronous counters, all flip-flops share a common clock and change state at the

same time. In asynchronous counters, each flip-flop has a unique clock and the flip-

flop states change at different times.

Synchronous counters are categorized in various ways. For example:

Modulus counter - counts through a particular number of states.

Decade counter – modulus 10 counter (counts through ten states).

Up/down counter – counts both up and down, as directed by a control input.

Ring counter – formed by a "circular" shift register.

Johnson counter – a twisted ring counter.

Gray code counter - outputs a sequence of Gray codes.

Counters are implemented in a variety of ways, including as

dedicated MSI and LSI integrated circuits, as embedded counters within ASICs, as

general-purpose counter and timer peripherals in microcontrollers, and as IP

blocks in FPGAs.

Asynchronous (ripple) counter

https://en.wikipedia.org/wiki/Shift_register
https://en.wikipedia.org/wiki/Medium-scale_integration
https://en.wikipedia.org/wiki/Large-scale_integration
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/ASIC
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/File:Asynchronous-counter2.svg

Asynchronous counter created from two JK flip-flops

An asynchronous (ripple) counter is a "chain" of toggle (T) flip-flops wherein the

least-significant flip-flop (bit 0) is clocked by an external signal (the counter input

clock) and all other flip-flops are clocked by the output of the nearest, less significant

flip-flop (e.g., bit 0 clocks the bit 1 flip-flop, bit 1 clocks the bit 2 flip-flop, etc.). The

first flip-flop is clocked by rising edges; all other flip-flops in the chain are clocked by

falling clock edges. Each flip-flop introduces a delay from clock edge to output

toggle, thus causing the counter bits to change at different times and producing a

ripple effect as the input clock propagates through the chain. When implemented

with discrete flip-flops, ripple counters are commonly implemented with JK flip-flops,

with each flip-flop configured to toggle when clocked (i.e., J and K are both

connected to logic high).

In the simplest case, a one-bit counter consists of a single flip-flop. This counter will

increment (by toggling its output) once per clock cycle and will count from zero to

one before overflowing (starting over at zero). Each output state corresponds to two

clock cycles, and consequently the flip-flop output frequency is exactly half the

frequency of the input clock. If this output is then used as the clock signal for a

second flip-flop, the pair of flip-flops will form a two-bit ripple counter with the

following state sequence:

Clock cycle Q1 Q0 (Q1:Q0) decimal

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 0 0 0

Additional flip-flops may be added to the chain to form counters of any arbitrary word

size, with the output frequency of each bit equal to exactly half the frequency of the

nearest, less significant bit.

Ripple counters exhibit unstable output states while the input clock is propagating

through the circuit. The duration of this instability (the output settling time) is

proportional to the number of flip-flops. This makes ripple counters unsuitable for use

in synchronous circuits that require the counter to have a fast output settling time.

Also, it is often impractical to use ripple counter output bits as clocks for external

circuits because the ripple effect causes timing skew between the bits. Ripple

counters are commonly used as general-purpose counters and clock frequency

https://en.wikipedia.org/wiki/JK_flip-flop
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#JK_flip-flop
https://en.wikipedia.org/wiki/Synchronous_circuit

dividers in applications where the instantaneous count and timing skew is

unimportant.

Synchronous counter

A 4-bit synchronous counter using JK flip-flops

In a synchronous counter, the clock inputs of the flip-flops are connected together

and all flip-flops are simultaneously triggered by the common clock. Consequently,

all of the flip-flops change state at the same time (in parallel).

For example, the circuit shown to the right is an ascending (up-counting) four-bit

synchronous counter implemented with JK flip-flops. Each bit of this counter is

allowed to toggle when all of the less significant bits are at a logic high state. Upon

clock rising edge, bit 1 toggles if bit 0 is logic high; bit 2 toggles if bits 0 and 1 are

both high; bit 3 toggles if bits 2, 1 and 0 are all high.

Decade counter

A circuit decade counter using JK Flip-flops (74LS112D)

A decade counter is one that counts in decimal digits, rather than binary. A decade

counter may have each (that is, it may count in binary-coded decimal, as

the 7490 integrated circuit did) or other binary encodings. A decade counter is a

binary counter that is designed to count to 1010 (decimal 10). An ordinary four-stage

counter can be easily modified to a decade counter by adding a NAND gate as in the

schematic to the right. Notice that FF2 and FF4 provide the inputs to the NAND gate.

The NAND gate outputs are connected to the CLR input of each of the FFs."[1] . It

counts from 0 to 9 and then resets to zero. The counter output can be set to zero by

pulsing the reset line low. The count then increments on each clock pulse until it

reaches 1001 (decimal 9). When it increments to 1010 (decimal 10) both inputs of

the NAND gate go high. The result is that the NAND output goes low, and resets the

counter to zero. D going low can be a CARRY OUT signal, indicating that there has

been a count of ten.

A ring counter is a circular shift register which is initiated such that only one of its flip-

flops is the state one while others are in their zero states.

A ring counter is a shift register (a cascade connection of flip-flops) with the output of

the last one connected to the input of the first, that is, in a ring. Typically, a pattern

consisting of a single bit is circulated so the state repeats every n clock cycles if n

flip-flops are used.

https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits
https://en.wikipedia.org/wiki/Counter_(digital)#cite_note-1
https://en.wikipedia.org/wiki/Shift_register
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/File:DecadeCounter.jpg

Johnson counter

A Johnson counter (or switch-tail ring counter, twisted ring counter, walking ring

counter, or Möbius counter) is a modified ring counter, where the output from the last

stage is inverted and fed back as input to the first stage.[2][3][4] The register cycles

through a sequence of bit-patterns, whose length is equal to twice the length of the

shift register, continuing indefinitely. These counters find specialist applications,

including those similar to the decade counter, digital-to-analog conversion, etc. They

can be implemented easily using D- or JK-type flip-flops.

Computer science counter

In computability theory, a counter is considered a type of memory. A counter stores a

single natural number (initially zero) and can be arbitrarily long. A counter is usually

considered in conjunction with a finite-state machine (FSM), which can perform the

following operations on the counter:

Check whether the counter is zero

Increment the counter by one.

Decrement the counter by one (if it's already zero, this leaves it unchanged).

The following machines are listed in order of power, with each one being strictly

more powerful than the one below it:

Deterministic or non-deterministic FSM plus two counters

Non-deterministic FSM plus one stack

Non-deterministic FSM plus one counter

Deterministic FSM plus one counter

Deterministic or non-deterministic FSM.

Variables. Variables can be considered as the most essential programming

techniques. The number and their type depend on the language you are using.

Repetition or Loops. «For» is the most widely spread type of repetition. Most

languages apply «for» to convey the idea of counting.

Decisions or Selection. To make the program flexible, we must make it respond to

user input. Most algorithmic languages use a select method to control the program

flow.

Arrays. Arrays are helpful for collections of similar items.

Modular Arithmetic. It will help to limit the number of program‘s outputs or to make

the things to ―wrap around‖. It‘s one of the most plain and helpful programming

techniques.

https://en.wikipedia.org/wiki/Johnson_counter
https://en.wikipedia.org/wiki/Switch-tail_ring_counter
https://en.wikipedia.org/wiki/Twisted_ring_counter
https://en.wikipedia.org/wiki/Walking_ring_counter
https://en.wikipedia.org/wiki/Walking_ring_counter
https://en.wikipedia.org/wiki/M%C3%B6bius_counter
https://en.wikipedia.org/wiki/Counter_(digital)#cite_note-2
https://en.wikipedia.org/wiki/Counter_(digital)#cite_note-2
https://en.wikipedia.org/wiki/Counter_(digital)#cite_note-4
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow

Manipulating Text. The text is being stored as numbers. The ability to convert the

symbols to ASCII and vice-versa is a very helpful technique. You can apply it in

many cases. One of them is to check for upper or lower case, for example. Chopping

up strings is also very useful. You can display initials or create anagrams in such a

way.

Random Numbers and Scaling. Scaling numbers is a helpful skill so try to master it.

Randomness will also help if you want things to look more natural. For example,

applying recursive programming techniques, you‘ve made a tree in Scratch but it

looks unnatural. Add some randomness to create a natural-looking effect.

WHAT PROFESSIONS REQUIRE PROGRAMMING SKILLS

The world is changing rapidly. New gadgets and electronic reviews appear almost

every day. And today many professions require coding and programming skills –

and not only those which are directly related to IT.

Programmer. Programmers make good money, and universal computerization

increases the demand for IT-specialists.

Web-developer. The popularity of social networks, unlimited possibilities of the

Internet for business, education, entertainment – all this makes the profession of

web-programmer interesting, popular and highly paid.

Copywriter, SMM – and SEO-optimizer. People of these professions are directly

related to the field of IT – their task is promoting sites on the world wide web and

social platforms. They don‘t develop web resources and databases but the people of

these professions must understand how they work.

Accountant, financier. People of these professions work a lot in specialized programs

which are often very complex and require competent configuration. That‘s when they

will need basic coding and programming skills.

Thus, the ability to program is extremely important for a person, no matter what

profession he or she has chosen. Learning programming trains memory, thinking,

logic and helps in achieving professional and life goals

The stack is a LIFO (last in, first out) data structure implemented in the RAM area

and is used to store addresses and data when the microprocessor branches to a

subroutine. Then the return address used to get pushed on this stack. Also to swap

values of two registers and register pairs we use the stack as well.

In the programmer‗s view of 8085, only the general purpose registers A, B, C, D, E,

H, and L, and the Flags registers were discussed so far. But in the complete

programmer‘s view of 8085, there are two more special purpose registers, each of

16-bit width. They are the stack pointer, SP, and the program counter, PC. The

Stack Pointer register will hold the address of the top location of the stack. And the

program counter is a register always it will hold the address of the memory location

https://besttechexpert.guide/

from where the next instruction for execution will have to be fetched. The complete

programmer's view of 8085 is shown in the following figure.

Fig. Programmer's view of 8085

SP is a special purpose 16-bit register. It contains a memory address. Suppose SP

contents are FC78H, then the 8085 interprets it as follows.

Memory locations FC78H, FC79H, ..., FFFFH are having useful information. In other

words, these locations are treated as filled locations. Memory locations FC77H,

FC76H, ..., 0000H are not having any useful information. In other words, these

locations are treated as empty locations.

On a stack, we can perform two operations. PUSH and POP. In case of PUSH

operation, the SP register gets decreased by 2 and new data item used to insert on

to the top of the stack. On the other hand, in case of POP operation, the data item

will have to be deleted from the top of the stack and the SP register will get

increased by the value of 2.

Thus, the contents of SP specify the top most useful location in the stack. In other

words, it indicates the memory location with the smallest address having useful

information. This is pictorially represented in the following figure –

Tutorialskeyboard_arrow_down

Studentkeyboard_arrow_down

Courses

Jobskeyboard_arrow_down

Top of Form

Bottom of Form

Sign In

Sign In

Home

Courses

Algorithmskeyboard_arrow_down

Data Structureskeyboard_arrow_down

Languageskeyboard_arrow_down

Interview Cornerkeyboard_arrow_down

GATEkeyboard_arrow_down

CS Subjectskeyboard_arrow_down

https://practice.geeksforgeeks.org/
https://auth.geeksforgeeks.org/?to=https://www.geeksforgeeks.org/branching-instructions-8085-microprocessor/
https://auth.geeksforgeeks.org/?to=https://www.geeksforgeeks.org/branching-instructions-8085-microprocessor/
https://www.geeksforgeeks.org/
https://practice.geeksforgeeks.org/

Studentkeyboard_arrow_down

Jobskeyboard_arrow_down

GBlog

Puzzles

What's New ?

Logical instructions in 8085 microprocessor

Data transfer instructions in 8085 microprocessor

Branching instructions in 8085 microprocessor

Reset Accumulator (8085 & 8086 microprocessor)

Difference between CALL and JUMP instructions

Simplified Instructional Computer (SIC)

Instruction Set used in simplified instructional Computer (SIC)

Instruction Set used in SIC/XE

Computer Organization | RISC and CISC

Difference between RISC and CISC processor | Set 2

Vector processor classification

Introduction of Single Accumulator based CPU organization

Computer Organization | Problem Solving on Instruction Format

Computer Organization | Instruction Formats (Zero, One, Two and Three Address

Instruction)

Addressing Modes

Addressing modes in 8085 microprocessor

Flag register in 8085 microprocessor

Flag register of 8086 microprocessor

Addressing modes in 8086 microprocessor

Memory Segmentation in 8086 Microprocessor

General purpose registers in 8086 microprocessor

Registers of 8085 microprocessor

Pin diagram of 8085 microprocessor

https://www.geeksforgeeks.org/category/guestblogs/
https://www.geeksforgeeks.org/puzzles/
https://www.geeksforgeeks.org/geeks-classes-geeksforgeeks/
https://www.geeksforgeeks.org/logical-instructions-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/data-transfer-instructions-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/branching-instructions-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/reset-accumulator-8085-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/difference-call-jump-instructions/?ref=lbp
https://www.geeksforgeeks.org/simplified-instructional-computer-sic/?ref=lbp
https://www.geeksforgeeks.org/instruction-set-used-in-simplified-instructional-computer-sic/?ref=lbp
https://www.geeksforgeeks.org/instruction-set-used-in-sic-xe/?ref=lbp
https://www.geeksforgeeks.org/computer-organization-risc-and-cisc/?ref=lbp
https://www.geeksforgeeks.org/difference-between-risc-and-cisc-processor-set-2/?ref=lbp
https://www.geeksforgeeks.org/vector-processor-classification/?ref=lbp
https://www.geeksforgeeks.org/introduction-of-single-accumulator-based-cpu-organization/?ref=lbp
https://www.geeksforgeeks.org/computer-organization-problem-solving-instruction-format/?ref=lbp
https://www.geeksforgeeks.org/computer-organization-instruction-formats-zero-one-two-three-address-instruction/?ref=lbp
https://www.geeksforgeeks.org/computer-organization-instruction-formats-zero-one-two-three-address-instruction/?ref=lbp
https://www.geeksforgeeks.org/addressing-modes/?ref=lbp
https://www.geeksforgeeks.org/addressing-modes-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/flag-register-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/flag-register-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/addressing-modes-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/memory-segmentation-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/general-purpose-registers-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/registers-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/pin-diagram-8085-microprocessor/?ref=lbp

Interrupts in 8085 microprocessor

Interrupts in 8086 microprocessor

Program for Decimal to Binary Conversion

Cache Memory in Computer Organization

Program for Binary To Decimal Conversion

Random Access Memory (RAM) and Read Only Memory (ROM)

Branching instructions in 8085 microprocessor

Last Updated: 29-07-2020

Branching instructions refer to the act of switching execution to a different instruction

sequence as a result of executing a branch instruction.

The three types of branching instructions are:

Jump (unconditional and conditional)

Call (unconditional and conditional)

Return (unconditional and conditional)

1. Jump Instructions – The jump instruction transfers the program sequence to the

memory address given in the operand based on the specified flag. Jump instructions

are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the

described memory address.

OPCODE OPERAND EXPLANATION EXAMPLE

JMP address Jumps to the address JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described

memory address only if the condition in satisfied.

https://www.geeksforgeeks.org/interrupts-8085-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/interrupts-in-8086-microprocessor/?ref=lbp
https://www.geeksforgeeks.org/program-decimal-binary-conversion/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/cache-memory-in-computer-organization/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/program-binary-decimal-conversion/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/random-access-memory-ram-and-read-only-memory-rom/?ref=leftbar-rightbar

OPCODE OPERAND EXPLANATION EXAMPLE

JC address Jumps to the address if carry flag is 1 JC 2050

JNC address Jumps to the address if carry flag is 0 JNC 2050

JZ address Jumps to the address if zero flag is 1 JZ 2050

JNZ address Jumps to the address if zero flag is 0 JNZ 2050

JPE address Jumps to the address if parity flag is 1 JPE 2050

JPO address Jumps to the address if parity flag is 0 JPO 2050

JM address Jumps to the address if sign flag is 1 JM 2050

JP address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions – The call instruction transfers the program sequence to the

memory address given in the operand. Before transferring, the address of the next

instruction after CALL is pushed onto the stack. Call instructions are 2 types:

Unconditional Call Instructions and Conditional Call Instructions.

(a) Unconditional Call Instructions: It transfers the program sequence to the memory

address given in the operand.

OPCODE OPERAND EXPLANATION EXAMPLE

CALL address Unconditionally calls CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions

executes.

OPCODE OPERAND EXPLANATION EXAMPLE

OPCODE OPERAND EXPLANATION EXAMPLE

CC address Call if carry flag is 1 CC 2050

CNC address Call if carry flag is 0 CNC 2050

CZ address Calls if zero flag is 1 CZ 2050

CNZ address Calls if zero flag is 0 CNZ 2050

CPE address Calls if parity flag is 1 CPE 2050

CPO address Calls if parity flag is 0 CPO 2050

CM address Calls if sign flag is 1 CM 2050

CP address Calls if sign flag is 0 CP 2050

3. Return Instructions – The return instruction transfers the program sequence from

the subroutine to the calling program. Return instructions are 2 types: Unconditional

Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is transferred

unconditionally from the subroutine to the calling program.

OPCODE OPERAND EXPLANATION EXAMPLE

RET none Return from the subroutine unconditionally RET

(b) Conditional Return Instruction: The program sequence is transferred

unconditionally from the subroutine to the calling program only is the condition is

satisfied.

OPCODE OPERAND EXPLANATION EXAMPLE

RC none Return from the subroutine if carry flag is 1 RC

OPCODE OPERAND EXPLANATION EXAMPLE

RNC none Return from the subroutine if carry flag is 0 RNC

RZ none Return from the subroutine if zero flag is 1 RZ

RNZ none Return from the subroutine if zero flag is 0 RNZ

RPE none Return from the subroutine if parity flag is 1 RPE

RPO none Return from the subroutine if parity flag is 0 RPO

RM none Returns from the subroutine if sign flag is 1 RM

RP none Returns from the subroutine if sign flag is 0 RP

1. Subroutine –

A set of Instructions which are used repeatedly in a program can be referred to as

Subroutine. Only one copy of this Instruction is stored in the memory. When a

Subroutine is required it can be called many times during the Execution of a

Particular program. A call Subroutine Instruction calls the Subroutine. Care Should

be taken while returning a Subroutine as Subroutine can be called from a different

place from the memory.

The content of the PC must be Saved by the call Subroutine Instruction to make a

correct return to the calling program.

2. Subroutine Nesting –

Subroutine nesting is a common Programming practice In which one Subroutine call

another Subroutine.

Figure – Subroutine calling another subroutine

From the above figure, assume that when Subroutine 1 calls Subroutine 2 the return

address of Subroutine 2 should be saved somewhere. So if link register stores return

address of Subroutine 1 this will be (destroyed/overwritten) by return address of

Subroutine 2. As the last Subroutine called is the first one to be returned (Last in

first out format). So stack data structure is the most efficient way to store the return

addresses of the Subroutines.

Figure – Return address of subroutine is stored in stack memory

3. Stack memory –

Stack is a basic data structure which can be implemented anywhere in the memory.

It can be used to store variables which may be required afterwards in the program

Execution. In a stack, the first data put will be last to get out of a stack. So the last

data added will be the First one to come out of the stack (last in first out).

Figure – Stack memory having data A, B & C

So from the diagram above first A is added then B & C. While removing first C is

Removed then B & A.

